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OVERVIEW

In October of 1976 Columbia University undertook an investi-
gation of a class of space vehicle control problems relating
to vehicle or component flexibility. The sole Principal
Investigator initially was Peter Likins, Professor and Dean
of the School of Engineering and Applied Science. In August of
1978 Professor Richard Longman joined the project as Co-
Principal Investigator. Under the direction of the two co-
principal investigators, the substantial tasks of this study
were largely the responsibility of Mr. Chittur Viswanathan,
and the report that follows is the principal content of his
Ph.D. dissertation. Appendix B of Part I of this report (see
Section 8) is a technical paper written by Professor Longman
for journal publication, and as such it may be read independently
of the body of the report.

The study progressed in two phases, represented by Parts
I and II of the Final Report. Part II is submitted here in
more abbreviated form than is planned for the Viswanathan
dissertation, both because of the size of the total docu-
mentation package and because of delays in preparation of the
report. The expanded presentation of Part II from the dissertation
includes an appendix of derivations, available upon request.

In technical content the study addresses two quite distinct
engineering questions:

Part I. Where should actuators be placed on spacecraft

with distributed flexibility?

iv
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Part II. How should we specify the dynamic characteristics
of flexible instruments to be pointed by a prescribed control
system?

The class of problem considered in Part I is of wide-ranging
concern, since it is raised by many proposed spacecraft; the
Solar Power Satellite is perhaps the most dramatic example.

The class of problem treated in Part II is of specific
applicability to the Instrument Pointing System on the Space
Shuttle. In this application an automatically controlled gimbal
mechanism is designed to point a variety of interchangeable
instruments toward their targets, with the gimbal system mounted
on an actively controlled spacecraft. Future instruments must
be designed after the control system characteristics are estab-
lished.

Parts I and II of this report describe work performed in
reverse chronological order. The task initially undertaken
(Part II) was an attempt to apply the methods of parameter plane
stability analysis to the Shuttle-based Instrument Pointing
Mount (IPM). By establishing stability boundaries in the plane
defined by two design parameters of the pointed instrument,
one might hope to provide the instrument designer with a useful
tool for the selection of these two design parameters within
the range for which the control system is stable. This concept
(originally suggested by Dr. Sherman Seltzer, then of the NASA
Marshall Space Flight Center) is easily implemented for suf-
ficiently simple mathematical models of the spacecraft system,
and the resulting parameter plane plots (éee Part II) offer the

prospect of genuine utility for prelinminary design. However,

o e an e



attempts to extend the useful range of the method to realistically
complex mathematical models are less successful. The parameter
plane approach can still be applied to system equations of con-
siderable complexity, but the parameters indicated for the
portrayal of stability boundaries are less useful for practical
design.

After exploring the parameter plane concept for the IPM to
what seem to be its practical limics, the Columbia group turned
its energies to the actuator placement problem. The results of
this effort (Part I following) are very encouraging, although
not yet definitive.

In the design of the spacecraft of the past and present,
the question of actuator (and sensor) location has received
remarkably little attention. It has generally been assumed
that both sensors and actuators should be placed on the
essentially rigid, central body that comprises the core of most
spacecraft of this era. Iun those exceptional cases in which
sensors and actuators have instead been attached to flexible
appendages, the objective has been to address specific
physically defined requirements. For example, gas jets were
located at the tips of the solar panels for the Mariner space-
craft series in order to maximize the ''lever arm" producing a
moment about the mass center of the spacecraft; the flexibility

of the solar panels was ignored in this sele-:tion.
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Future spacecraft may differ significantly from their ante-
cedents in both scale and the distribution of flexible components;
in some cases it may be necessary to treat the entire spacecraft
as a flexible body, with no rigid, central core. In such cases,
it becomes quite unclear where one should locate sensors or
actuators, or even how many should be employed. If one ~ompares
two alternative designs, it is not even clear what criteria one
should employ in comparisons.

The chief contribution of Part I is the development of a
criterion for the comparative evaluation of alternative actuator
locations. This criterion is a measure of a quantity introduced
here as the '"'degree of controllability."”

In what follows a definition is generated for the ''degree
of controllability" concept (after alternative definitions are
considered and discarded); techniques are established for
calcula.ing this measure; and application is made to flexible
spacecraft, both generically and specifically.

Although it would be unrealistic to argue that the critericn
advanced here prcvides a unique measure of the quality of an
actuator distribution design choice, it does seem to be as good

a basis for evaluation as any measure yet devised.
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THE DEGREE OF CONTROLLABILITY CONCEPT
AND ITS APPLICATION IN THE LOCATION OF
ACTUATORS ON VERY LARGE FLEXIBLE SPACECRAFT
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1. INTRODUCTION

This rasearch addresses problams broadly connected with the
dynamics and control of :‘Elexible spacecraft. From the dynamics point »f
viaw, the modeling of a spacecraft consists of treating some zomponents
as rigid bodiss and some as flexible. Thus, solar panels, booms, etc.
must usually be modeled as flexible, but they may have a rigid coras as a
base, The sizes of the spacecraft can vary tramendously a2crording t
their intended purposa. For instance, one design for a solar power
station (SPS) satellite calls for a 4.9 km x 14 km solar array. In such
applitations, it will be necessary to control not only the attitude,
i.2., orientation, but also the shape of the various componants of the
spacecraft. The need for shape control arisas due to the flexibility of
the spacecraft or its cumponents. Stringent requiraments may be imrosad
on the accuracy of attitude and shape contral. For instance, accuracy
of the order of thousandths of an arcsecond are sometimes needed in the
attitude control of certain scientific instruments. On some futura
spacecraft which function as larje antennas, accurate shap2 controal will
be necessary 5 obtain distortion free signals. The accuracy
requirement is a function of the wavelength of the signal transnittad
from the antenna. In order & achieve this goal for large spacecraf:
with distributed flexibility, sensors and actuators must be distributed

at various locations in the spacecraft. o
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From the control int of view, spacecrafs can ~ften be <classified
intd> two main Jrouns:

1. Those for which the spacecraft is fully defined before the

control system is designed; and

2. Those for which the control systam must oe specified before

certain interchangeable parts 2f a multi-purpose spacecraf: are
selected for futurs missions.
In what follows consideration is 3jiven 'to both classes of oroblaems.

Spaczcraft in the first class includes the usual case, and the
design of stable control systams for conventional spacecraft is a mature
discipline. However, the extreme size and distributed flexibility of
many future spacacraft pose various challenging rew oroblems in their
attitude and shape control. One such problem is the davelopment of a
rationale for the distribution of sensors and actuators throughout the
entire body of the spacecraft. How %o Ccompare different actuator
distribtutions and what criterion to apply to be able o decide on a
particular choice of distribution of actuators are the specific
objectives in Part I of this work.

3 typical example in th: sacond clags is the 3pace 3Shuttle's
Instrunent Pointing System (IPS) which must bDe designed to accurately
control the pinting of any of a family of scientific instruments, some
of which have yet to be designed. These instruments are typically
lightweight and their flexibility effects are important dus to pointing
requirements. The actual instruments involved and their purpose will
vary from one shuttle flight to another. A spacacraft compatible with

~ny one of such a set of instruments becomes a multi-purpose sdacacrafs,
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8ut it is not possible or practicable to design a control system for
avery instrument the spacecraft might carry, since some of thes2
instrunents may have to be planned for future needs. What is done,
instead, is to prodesign a comprehensive control system for attitude
cantrol of a rigid spacacraft. This control systam is specified [or the
corresponding multi-purpose spacecraft. And the objective is to seek
the characteristics in the most general terms of ¢hose flexible
instruments the gJiven control system can control with appropriata
stability margins.

This research work is organizad in two parts. Part I deals with
spacacraft belonging to the first group, in which the system is fully
known anc the distribution of actuators in the design of control systams
is the subject. Part II deals with spacecraft belonging to the second
group, in which the system is not fully known and the characteristics of
the class of flexible instruments compatible with a jiven contrsl system

2re investigated from the stability point of viaw.
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PART I

THE DEGREE OF CONTROLLABILITY CONCEPT AND ITS
APPLICATION IN THE LOCATION OF ACTUATORS

ON VERY LARGE FLEXIBLE SPACECRAFT
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2. THEORY NG,
2.1 TIntroduction

In Part I attention is focused on an aspect of design of the
control systems whose purpose is to control effectively the attitude and
shape of very larje flexible spacecraft. In the past, the aporoach to
the control system design was usually hased on the philosophy that al
spacecraft was essentially a rigid body with the €flexibilisy of
antennas, booms, solar panels, etc. treated as extraneous disturbances.
The purpose of the control was only attitude control of the spacecraft
and the design was basad on the rigid spacecraft with adjustments made
for the influence of the attached flexible components on th2 behavior of
the antire spacecraft. The term Dynamic Interaction was then usad to
describe this influence due to the component vibrations and localized
enerjy dissipation, which were treated as second order phenomena even
though occasionally they proved to be destabilizing for the entire
spacecraft. A good historical review regarding the prevailing attitudes
in this field for the last couple of decades can be found in [l}.
Today, the planners in the spacecraft industry are contemplating
structures of huje dimensions (of the order of kilometers) for future
spacecraft of the 1990's or 2000 and beyond. For these vehicles,
flexibility can no longer be considerad a second order phenomenon and

must be treated as an intrinsic proverty 2f the entire spacecraft, In

“z - - LI T P R R TR A —
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designing <ontrol systems for ‘these spacecraft th2 objective is n2
lonjer just the attitude control but simultaneously th2 shape control of
thesz2 huge structures. By shape control we =ean the restoration of
these huge structures to their nominal shape whenever they are disturbed
due %o any causa2 (tha2rmal stresses, gravity gradient torgu2, asrodynamic
torque, solar wind, etc. ets.). This is done by controlling the
vibrations of a finite number of inodes of a truly infinite set 2f modes
which describe the physical shapes of these distributed parameter
systems. B8ecause of the strong coupling of the attitude IJynamics and
vibration modes, their <control must be treated simultaneously.
Classical control theory is unsuitable for such large dimensional
multiple input multiple output systems, and it becomes essential to
adopt modern multivariable control theory technigues.

In order to achieve attitude and shape control it will be n=2cessary
to distribute actuators throughout the entire body of the spaceacraft.
How should tha number and locations of actuators be chosen in order to
best control the flexible spacecraft? This problem has been recognized
for some time, but to date iittle has appeared in the literaturs that
would help guide the control system designer in placing the actuatsrs.
Most of the known results identify the minimum number of actuators
needed for a given set of modes to be controlled, and identify certain
specific actuator locations which cannot be used because they result in
an uncontrollable systenm,

Once the designer chooses a set of actuators it is necessary to
maka sure that whatever distribution pattern he chooses the  system is

controlleble. The concept of controllability in modern control theory

G
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is a binary concept, either a syst2m is controllable or it 1is
ancontrollable. Starting from a set of actuator locations which nroduca
an uncontrollable system, but for which the number of actuators is
sufficient to praduce controllability, it will usually be the case that
moving one of the actuators by a distance € > 0 can produce a
controllable sy=te:, no matter how small the €. One axpects that for a
small €, even though technically the system is sontrollable, in some
sense it will mot be very controllable. It then seems natural to ask
"how <controllaple is the system with a particular actuator
distribution?” It is, therefore, reasonable £o seek extensions of the
astablished definition of controllability so 2as to permit a precise
definition of the "degree of controllability” which would prove useful
for actuataor placement.

It is the purpose of this work to generate, starting from basic
physical considerations, a rational definition of the degree of
controllability. The definition obtained is certainly not the only
ossible definition, but ¢ . does have the advantage over a definition
based on singular value de .nposition that the physical reality of
actuator saturation limitations is included in a fundamental way.

The definition is then applied to the actuator placement problem
for flexible spacecraft. With this tool the control system designer zan
rank the desirability of various candidate actuator distributions, and

thus he would have a systematic way of picking which distribution to

use.,
ORIG!N
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2.2 Definition of che Degree of Controllahility

Let us consider any general linear time invariant system in state

variable form

x%t) =cAxt(t) +&u(t) (2.2-1)
where ¢ R'and utR™ It should be noted -that—'al-th“:»;é'ﬂw we focus our
attention on this system, the degree of controilability definition which
we adopt is also applicable to more general systems of the form x™(t) =

£(x*(t) ,u*(t) ,t) having a solution x™(t)=0 (£(0,0,t)=0).

Several candidate definitions were scrutinized in the course of the
search for a suitable definition of the degr2e of controllability. It
is instructive to discuss some of these candidate definitions which were
considerad and discarded--- the process of starting with a blind attempt
at a definition and progressingy to a well formulated conszept highlights
the characteristics that a workable definition must have. We discuss
thes2 candidate definitions in the following:

1. Eigenvaluas of v:,)'.)‘r t

It is tempting to try to Zonnect the degree of controllability
to properties of the standard controllability matrix
Q= [ AB d‘l-----«d'} }, and define degree of controllability as the

square root of the minimum or maximum eigenvalue of QQT . Five apparent

* The suparscript T is used to denote transpose of a matrix
or vestor throughout this text,

™0
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difficulties with this definition must somehow bDe handled before the
definition becomes viable. These are: 1) The degree of controllability
is affected by a transformation 9f coordinates (since the 2igenvalues of
JQT are not invariant under changes in state variable representation).
2) Althouwgh this candidate definition satisfies the basic requirement
that the degree of controllability is zero when the system |is
uncontrollaple, it is not immediately clear what other physical meaning
can be attached to QQT and hence to the size of its 2igenvalues. 3) It
is not clear how the stability of the system is reflected in this
definition. It is much easier to control a stable system with the
objective of returning the systam toward the origin (x*=0 solution) than
an unstable system with the same objective. (The Reverse is true when
the objective is to reach out from the origin.) 1) The candidate
definition does not involve a dependence on thz amount of time T alloted
to accomplish the control task. It can be mucu easier to control the
system state in some directions in the state space at one time than at
another time, so the dejree of controllability should depend on T. 5)
It is not clear that the amount of control effort needed to accomplish
the control task is reflected in this definition. In the satellite
described in section 2.1 where one actuator has been moved by a small
amount € to produce controllability, one expects the "weak
controllability" of the system to be manifested in the need for very
large control actions to accomplish certain small changes in the state,
and hence the control effort regquired is cf fundamental importance in

making a definition.



2. Impulse rasponse
It is clear that some type of limitation or standardization of

the control effort must be included in the definition. Consider a
standardization which restricts the control to a unit impulse, and
consider systems with el in diagonal form and with u® a scalar. For
distinct eigenvalues the system is controllable if none of the elements
é; of the column matrix & are =zero. Furthermore, these components
indicate how far a unit impulse control will move each state comgonent
instantaneously (impulse response), so one might suggest the m%nl b\ as
a degres of controllability. Here we are trying to generalize a second
standard test for controllability to obtain a degree of controllability
definition. The difficulties with this candidate definition are: 1)
The control actions are so restricted that the components of the state
cannot be affected independently. The control of all statas by a single
control u" relies on the differences in the dynamic behaviors of the
states. 2) The candidate definition does nct involve a dependence on
the 2igenvalues of the system, which means the information regarding tha
stability of the system is absent. The rest of the argument is the same
as in (3) of candidate definition 1. 3) The candidate definition does
not involve a dependence on T and exactly the same argument as in (4) of
candidate definition 1 holds.

3. Energy due to an impulse

When an impulse is applied to a physical system there occurs a
chanje in the total energy of the system, and on2 might wonder if this
chanje in energy due to an impulse could not be used to define the

dejree of controllability., Since this is dependent on the impulse input
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it will suffer from all the drawbacks of the impulse response discussed
under the candidate definition 2.

Thes2 candidate definitions do not seem to include the effacts of
all pertinent wvariables., Hence, it will be necessary to build the
definition from more fundamental considerations. It is interesting ¢t
nota that, in certain special cases, the resulting degree of
controllability definition will be a2 modified version of the candidate
definition 2 (and by employiné a different aporoach involving singular
value decomposition of matrices something of the general form of the
first candidate definition can result).

It is now evident that the definition of the degree of -
controllability, besides being in some sense a measure of how easy it is 'g
for the controller to control the system, must in some way handle five
things:

1) It must have the prcperty that the degree of controllabliity is

zero when the system is uncontrollable.

2) It must reflect in some way the stability information of the

SYStem. %% i
.Q%;, .
3) It must somehow consider dependence on total time T. % % ;
, Ya -
4) 1t must standardize the control effort in some way. o i
Y ) e
5) The control objective must be restricted. B

4
-, .
: |

Concerning the last point, certainly diffarent control objectives should
influence the choice of the control system design, and hance the degree
of controllability of a candidate design should be keyed to the

objective involved. In a large class of problems (regulator problems),

wrrkna

the equilibrium solution x*=0 to equation (2.2-1) is of primary
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importance, and the control objective is to return x* to zero after &
disturbance. Since this is the most common attitude and shape control
problen for flexible spacecraft, we will restrict ourselves to this
objective. Concerning the standardization of ths control effort we will
require that the control components satisfy |ut|< 1 for i=1,2,...,m,
which represents realistic physical limitations of the actuator
capabilities. Note that the use of one as the bound for all control
components implies normalizing each component of u® to produce a new

sontrol vestor u, and adjusting the matrix & to produce a new matrix B.

Controllability requires the existence of a control function which
can transfer any initial state to any final state in finite time. With
our more limited control objective, the degree of controllability should
be related to the volume of initial system states (or states resulting
from disturbances) which can be returned to the desired state x*=0 in
time T using the bounded controls. Consider the nature of this wolume
in more detail. In a controllable systzm, more initial states in any
direction can be returned to the origin if the system is stable than if
it were unstable. Hence, tha volume of initial system states is greater
in the case of a stable controllable system than in the case of an
unstable controllable system. Now, in an uncontrollable system thare
will be at least one diraction in th2 state space for which initial
conditions in this direction cannot be returned to the origin, and the
volune will lose one or more dimensions. For a controllable system
whose paraneters are such that it is nearly uncontrollaple, only initial

conditions very close to x®=0 along the above mentioned direction <could

VJ
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De returned to tha origin in time T using the bounded contrals. Hance,
#2 will generate a definition of tha degrea of conirollability based on
the minimun distance from the origin to a normalized state that cannot
be browght to the origin in time T. “ore loosely it is the minimum
disturbanc2 from which the system cannot recover in time T.

The coordinates of a state space will very rarely all have the same
physical units, and hence it is clear that compariny Jdistances in the
state space will require that each coordinate must be made unitless by
normalization. How should one choose the normalization to  usa?
Recognize that whan comparing two controller designs for controlling the
same dynamic system, th2 needad minimum distance for each design will
usually cor::espor;d to a different direction 1in state space. Hence,
ranking of the deyree of controllability of the two systems will depend
on comparison of diritances in different directions, and this implies
that we must be 2aJually interested in controlling deviations of the
state from x"=0 in all directions in the state spaca. In order t»
accomplish this the control system designer must specify n-1 numbers
wnich represent his degree of interest in controlling each component of
the stata., This could be done, for example, by determining the

deviations of x| , x

S seeer X which would be considered of equal

importance to a deviation of x, =l. The reciprocals of these numbers
would then be used to produce normalization faztors for each of the
coordinates of the state space giving a new state vector x. The system
equations expressed in terms of the normalized state x and normalized

control u are then written as

/3



X(t) = 2x(t) + Bu(t) (2.2-2)
fu,l € 1  i=1,2,....,2
Just as in optimal contro. :n20ry where the control systen designer
must be specific about his goal by specifying a cost fuactional, in
order to define the degree of controllability, it is nezessary to be
fully specific not only about the objective of keeping x=0, but also
about the relative importance of keeping eac.. omponent of X near zero.
Relative to the normalized system (2.2-2) we are now ready to make
the following definitions:
Definition 2.1: The recovery region for time T for normalized

system (2.2-2) is the set

R = [ x(0) 3 ut)y, ta (0,T], lu (D! &1 for

i=1,2,...,m 3 x(T) = 0 }

Definition 2.2: The degree of controllability in time T 2f the x=9
solution of normalized system (2.2-2) is defined

as
C=inf || x(0) ! ‘¢ x(0) ¢ &

where [+l represents the Euclidean norm.
Thus, the recovery rejion identifies all of the initial cunditions
(or disturbed states) which can be returned to the osrigin in time T

using the bounded controls. And the deziee of control.ability is a
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scalar m2asure of the size of the rejion, whore the scalar is chosen as
the shortest distance from the arigin to an initial state which cannot
be returned o the origin in time T.

The degres of controllacility, as defined, is keyed to the stata
vector x enployed. No transformations of coordinates can Ye allowed
onse the normalization has been specified (unless the norm used in the
definition is adjustad to compensate for the rssulting distortion of the
state space). ’

It should be pointed out that although Definition 2.2 incorporates
all the properties which wer2 identified as necessary in the definition
of the degree of controllability, it is not necessarily unique in doing
so. For example, a standardization of the control effort in terms of
enerjy can also be employed, but the inequality saturation constraints

on the controls used here represents the more realistic situation.



2.3 Concepts for Aporoximating th2 Recovery Region

In order to make the definition of the degree of contrallébility
useful, it is necassary to develop a simple algorithm to gencrate at
least an approximation to the distance (°. This necessitates
approxinating the recovery region /.

Note that the solution of (2.2-2) is given by (see (2], [3])
t
x(t) =&(t,t,)x(t,) +&(t,tL,) /&(t, ,S)Bu(s) ds (2.3-1)
t.

whare §(t,t,) is the state transition matrix for (2.2-2). A complete
explanation of #can be found in [2]. Without any loss of yenerality we
can assume the initial time t =0 and the final time teT., Also we will

denote x(0) by x, and x(T) by x4. The solution (2.3-1) then is simply
T
x.r-§(l',0 )x, +&(T,0) f@(o,t)au(t) dat (2.3=-2)
]

The displacement in the stat2 space in time T is X = X, and let
2
&= x_- x, (2.3-3)
and the distance moved during time T is the Buclidean norm |l § I From
»
(2.3-2) the displacement § can be expressed in either of the followinj
form:

T

bd -t
&-(e-§(mm1g+fy&umu)& (2.3-4)
°

16
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or

T
A’:- ($(T,0 - £ )x, +§(T,0 /§(0,t)3u(t) at (2.3-5)
[}

where E is the unit matrix and the suoscripts on & "are used to identi‘y
the two forms. In (2.3-4) the displacement is expressed in terms of the
£inal state x,. and in (2.3-5) it is axpressed in terms of the initial
state X,. Our interest lies in Jl‘: ir which x_=0 and we termed the set
of states x, as a recovery rejion R (see Def.(2.1)). A companion rejion
S nhich is the sa2t of states x_ for which x =0 can be defined in a
sinilar way to the recovery region £. The ragion . then represents tha
reachable states from the origin. Putting x =0 for J:, and x =0 for S:
in (2.3-4) and (2.3-5), respectively, we can obtain

-

§ = f@(om)su(t) dt (2.3-5)
0
and
+
Sz = §(T,0) /g(o,:)au(:) dt (2.3-7)

0

where the (*) on ¢; (i=l,2) has been removed to indizate that the
displacement is about the origin (X or X, 1S zero).

tote that for linear time invariant systems the fundamental matrix
can be written as
Alx-T)

é ({"T') s €
(2.3=3)



from whizh

AT At

&(T,0)= e ; &(ot)= e (2.3-9)

Two remarks are worth making regarding the comparisons between the

regions R and L2 corresponding to the displacements d, and d, when

identical control u(t) is applied during the same time T for both cases.

1.

2.

The region;tz.of the reachable states from the origin in time T
is the same as the recovery region R if the control process
were taking place in a time domain where time runs backward
(interchange t,(=0) and T in d§, and obtain the same magnitude
as of 4, ). |

The region R is large than the region R for time T if the
system is unstable about the origin (i.e., the real part of at
least one eigenvalue of A 1is greater than =zers). This |is
because there is always at least one component of 4, whose
magnitude is greater than the corresponding component of &
(due to the influence of the exponential terms, e* , in

$(T,0)). If the system is stable the converse is true.

In the following analysis we will be concerned only with the

recovery region R and the corresponding equation for tha state space

displacement is (2,3-5 )?.

+The superscript 1 will be omitted henceforth and ¢ ,
unless otherwise mentioned, corrasponds to the recovery
region R , i.e., in (2.3-3).

be
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3y the Caley-idamilton theorem the state transition natrix can be
written as
At =’ «
0,0 =& =3 y (A (2.3-10)
ox0
where the Y are scalar functions of time. Partition the B matrix ints

column matrices b;, and define the following matrices

B=[b b b ..cud, ] (2.3-11)
-
Vo= vy eoeer v, 1] (2.3-12)
Q@ =[6 As A8 ..... A™'8] (2.3-13)
2 n=i
Q, = [6n Ab ATy -o-- A "9] (2.3-14)

Then § can be represented in the following alternative forms

el ™ T of
§ -g.. g' {af “’-«mu“m"u} A b (2.3-15)
m T el
) E‘ { [t b« Akt oo A7y Jugt (2.3-15)
" T
-2 ) (g w]upctt (2.3-17)

For the purposes of illustrating certain concepts, let us restrict



oursalves to the case of 3 scalar control so that the summations over g
as well as the £ subscripts in tha above can be dropped, and B8 is a
colunn matrix b. Also let =2 for simplicity. Suppose the recovery
ragion is as shown by Region I in Fig.l. The maximum %=, component of
any state in the recovery region is obtained by using the control u
equal to minus the signum function of the first component of the vector
[Qy] in (2.3-17), since this maximizes the X, component of the integrand
at each time t.The right hand side (and left hand side) of the rectanjle
enclosing this recovery region in Fig. 1 can thus be found by
inteqrating the £i-st component in (2.3-17) using this control. If
desired the point at which the recovery region touches this side is
obtained by integra.ing the second component of (2.3-17) using this
control. The top and bottom of the rectangle are found similarly.

The rectangle obtained in this manner might be considered an
aporoximation to the recovery region, and then the shortest distance
from the origin to one of tha sides might be considersd an
aporoximation, (3 , to the Jdegree of controllability, (= ('-‘x . Note that
this necessarily produces a 6 which is an upper bound for the dejrees of
controllability. In some cases this approximation is a tight one, but
often it is not. Suppose the recovery ra2gion was Region II of Fig. 1,
This corresponds to a system which has a much poorer degree of
controllability, C.Qi, yet the approximation @ remains the same, In
fact, suppose that QI-° in such a way that Region II degenerates to 2
line forming a diagonal of the rectangle in Fig. 1. Then the system is
an uncontrollable system, but tha approximation 3 still predicts a

jJood deyree of controllability. Hence, this approximation mus:t be
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rajectad.
For the case of a scalar contral being considered, this shortcoming
can be eliminated by using  as expressed in (2.3-15) and maximizing

of
components along A b . The control
we) = = syn [y, (&) (2.3-18)

extremizes the moefficient of the vector A b in (2.3-2). It will
simultaneously produce some components alonjy the other vectors A{b
for Y #« . This is a maximization of a componant of tha vector § but
it is a component as seen in a nonorthogonal set of coordinates. Hence,
the wupper bounds obtained in the various directions define a
parallelogram (more generally an n dimensional parallelopiped) which can
Se considerad as an approximation to the tec.overy region, as shown in
Fig. 2. As before there is some point on each side of the
parallelogram which is in the recovery region, but no point outside the
parallelogram is in the region.

The minimum distance to> a side of the parallelogram, i.2., the
minimun perpendicular distance to a side, is an approximati-n (" to the
degree of controllability, ¢. When the system becomes uncontrollable,
the columns of Q become linearly dependent, and hence the perpendizular
distance to one of the sides becomes zero. This means that this "
has the essential property that ("'-0 whenever  (© =0,

We conclude that for the scalar control case we have 2a viable
method Of aporoximating the degree of controllahility. A simple methed

will be presented in a later section to detarmine th2 n2eded ainimum

fek o -



rerpendizsular distance.

This approximation is still an upder bound, and it zan be improved,
in fact made arbitrarily good, by considering mora directions in the
state space. Let e be any desired unit vector expressed as 3 ~olumn
matrix of components., B8y examining (2.3-17) the state in the recovery
region having a maximun component along the dirsction e is obtained
using the contral

w=-sqn [ eqy]] (2.3-19)

and hence no points in the recovery region lie beyond the line

perpendicular to e and a distance

<
-

[ leTquldt (2.3-20)

d

from the origin (but at least one point in the recovery r2gion lies on
the line). Figure 3 illustrates how use of three e's (e, ey » a0
eq ) identifies three tangents to the recovery region, and when taken
together they begin to approximate the region boundary. Let @ be
the minimum value of (2.3-20) for any set of diresctions e considered.
Then an improved estimate of the degree of controllability is
il amin((v*,(ﬁ) » and (°">(° can be made arbitrarily close to the true
degree of controllability (® by picking a sufficienct number of
directions e. This method of improving the approximation to the degree
of controllability will also be generalized to the multiple contral

case.

(\)
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2.4 Fundamental ZIquation for Racovery Ragion Approximation

in the Multiple Control Case

The previous section presented a procedure f;r generating an
approximation (" to the degree of controllability (° in the case of a
scalar control u. The procedure required tha use of n carefully chosen
directions in the stats space, b,Ab,...A "' b, in the aporoximation to
the recovery ra2gion in order to insure that (-"' had the property that
(’..o if and only if the systam is uncontrollable. If tha control
vector is m dimensional with wm»>t it is no lonjer obvious how to obtain
this property, since the columns of the Q matrix necaessarily contain
linearly dependent vectors. Instead, we will consider the eigenvectors
and gJeneralized eigenvectors of the A matrix of (2.2-2) as tha n
linearly independent directions in the state space. Certainly some
modifications must apply when these vectors are complex. In the single
control case the value of (" became zero when the system became
uncontrollable because linear dependence of the wvectors
b,Ab,....,A"-'b implies the collapse of at least one dimension of the
parallelopiped. The vectors chosen here for the multi-dimensional
control case do not exhibit this reduction. Nevertheless, it will be
shown in the next section that the desired property of the resulting

("‘ can be demonstrated under fairly 4general assumptions. This
section is devoted to generating the appropriate expression for §
equivalent to equations (2.3-5, 2.3-15-2,3-17), expressed in terms of
components in these 2igenvector directions.

Let J be the Jordan canonical form of the matrix A, and let P be

e

[T
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the matrix of eijenvectors and generalized eigenvectors so that

PT'aP = 7 ; J=diag [ 3,, 3, eeeees I, (2.4-1)

where the J,  are the sguare Jordan blocks of dimension v,
k=1,2,....,r. A diagonal Jordan block is of order one. Associated with
each Jordan block is an eigenvalue 12, so that vsn and r is
Jreater than or equal to the number of distinct eigenvalues. Alsy, let
P, be the n columns of P, and f::- be the n rows of P (the left
eigenvectors and generalized left eigenvectors). Every Jordan blozk
Tk corresponds to one independent eigenvector of Aand J -l
generalized eigenvectors, and the same is true for the left eijenvectors
and generalized left eigenvectors.
It is appropriate to list here a few results on matrix algebra (see
Appendix A for derivation) which we will use in our further analysis:

p-le-At = a~Tt p=!

o

? eeseey e

Ak <A
e'T“t = e Lo e Nt (2.4=2)

whare
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r "-i
2 3 Y
l -t (-t) _:._t-) XEEREEEX ("t)
2! 3 Wen!
R -2
"™ |9 1 -t (=8 ceeeeees (=B)"
2l SR
-3
0 0 1 -t 2s00ece (-t) *
x-3)
0 o '3 0 oo'lo-o -t (2.4-3)
0 0 J J .ooOcoc 1l

K= 1,2,3,00;....,!, r ‘ n

With these we are ready to derive the desired fundamental equation
for § , the state space displacement. The form for this fundamental
equation is defined in the following:

Definition 2.3: A spatial form for the state space displacement

is defined as the form

N
§=c¢ [x(eu—c
[}

in wnich Cis aset of L ( L sn ) time invariant nxl ocolumn vectors
S, +C, re+sSy s in the real n dimensional space, and =« (t) is 2 set of {
time dependent real scalar elements « (t),x,(t) '“‘"‘1(:) , SO that one
elament of o« (t) is associated with every column vector of C. In matrix

rotacion, if

C= [c. € v - ..c,.J ; «T(t)s[-(‘(i) (. ... xlu)]
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then
T

§ = [ c Cz"“cg]{ !"",(-E-)-I oAt
° j“z.(t)

o(l(t)l

T T T

= C,/«,(eu& + czfo(z(t-)d.l' 4. -4 C, |
-]
]

2.4.1 Reduction of § -Equation to the Spatial Form

The § -equation from (2.3-6) using (2.3-9) is

T
= - t
6-[ e Buwd (2.4-4)
(]

Premultiplying the integrand on the right side by a unit matrix E =
PP" , where P is tha transformation matrix of A for the Jordan cancaizal

form (see (2.4-1)),
-
§ = / pp-! oAt gy dt
[ .

-Ia-At

Substituting for P from (2.4-2)

-
$§ = [ P e_‘“ P'B ub) dt (2.4-5)

0

It is convenient to partition the nxn matrices P, P~ , colunn wise

ard row wise, respectively. Let f-’; » k=1,2,3....,r denote a tyvoical
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A

partition of P consisting of Y, <=olumns of P, and let B, denotz a

typical partition of p~'  consisting of V. rows of P~ . Also,

N X . - AT
it is easier to identify the column vectors P; (or the row vectors ». )

o

in relation to the partition o which they belong as well as to the

3global matrix P (or P™') if we adopt a modified subscript notation. So

T
let P, +B,., »%1,2,3,....,1,i=1,2,3,...., 7, , denote thz p, ,
L+ L o+

AT
P, vectors where

3 K
L = > Y Kz, » N
cto o (2.4-4)
0 y Ka o
~ A
The index k refers to the partition P, , P and i refers to the

~

location in a partition (e.g., %=2,i®4 refers to the 4th coluwn in £

and (L'+4)th column in P. The same is true for row vectors of P") .

Also, note that L™ J‘-L‘. The L th row vector of P~' ¢ K=1,2,.00,T,
is of great significance in our analysis and we will refer to it oftaen.
So it is expedient to define the following:

Definition 2.4: The column vectors ;L" ' LK-‘- f \’; , k=1,2....,C,

sa}

which are the transpose of the row vectors ,::; £
p-! are defined as foundation vectors.

We jive this name to these vactors because *hese are the (lefe)
eigenvectors on which the chain of generalizsed eigenvectors is built
corresponding to each Jordan block.

With these notations

5 = ot ' |
N }’Lk-f‘t L +2 L +3 L -r\)‘
nxy

TR R
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Therefore, in

P -

L o+~

AT

-
L“+JK

1)
ol

C A
- Pl
A
p

L .

(2.4-7)

(2.4-8)

partitioned form the intejrand of (2.4-%5) using (2.4-2) is

P leu =[BF- -

~

P

]

[ Alew

A

A

;!

P

1
(2.4-9)
(2.4-12)
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In the above tne mathamatical quantities P, ;x ’ TK could in Jeneral
be complex due to <complex 2igenvalues of the system. 3ut sur system
(x,u4,A,B) is real and so is the displacement 4 . Ia order to Ye able to
attach real meaningy to our results the recovery region must be

constructad in real space.
2.4.2 Reductisn of the J-equation to> Real Domain

Secuuse our systam is real we know that the eigenvalues are 2ither
real or occur in complex conjugate pairs. For real eigenvalues we will
choose real eiganvectors and for pairs of complex conjugate eigenvalues
ve will choose eigenvectors in conjugate pairs; i.e., if p. is an
2igenvector of A corresponding to an 2igenvalue A, , then -FL.? is an

eigenvector correspondirg to the eigenvalue 'A'c, because

Ab. =2 b . Ab. = b o Ab:= A b (2.4-11)

/

Similarly, for left eigenvectors the conjugate property is true, i.e.,

- = AT = A
boA =2 b . blA=Ab , er b A=Dib

(2.4-12)

For real eigenvalues the left eigenvectors are also real. The conjujate

proparty by extension is true for all generalized eijenvectors (left or

"'Throughout this text a bar will be usad to denots th2
comglex conjugate of a mathematical object.
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righe).

In (2.4-197) the right side is a product of two matrices each in
partitionad form according to the order of T, . The location per == of
any partition in a matrix does not matter so long as the partitions in
the two matrices correspond to each other ( e.g.. sk an?!
‘.:'..t 3,‘8& ). S9 we can assume that in (2.4-19) the partitions
e Kta,‘b& in the second matrix are arranged such that those
corresponding to real eijenvalues (real Je ) are on top, followed by
pairs of partitions, each pair corresponding to a pair of complex
conjujate eigenvalues (complex J'K ). And the partitions Fk in the
first matrix correspond to those in the second matrix .

We will let ¢ denote the class of all real quantities, and c*
denote the class of all complex quantities. For class & the partitions
":K) e‘J;‘tﬁ‘su are real, aad for class ¢* they are complex.

It is now convenient o write (2.4-10) as follows:

pe‘rtp"bug [(:r. CI*] C'I (2.4-13)
.
‘x

where

(I is & set of veaa| pavditions {Fg}’ )tef

~ ‘
(: s a Sak of cwmplex pavhiions {p.‘}' 2w €C
Cp iv & seb of veal hackibions [P 00] 2, C

, Tt A e
(; is a set of Cch.x ?«-h'hm: {e, . Pksu})hké,

Now, ~e can formulate the reduction of & to the spatial form in roal

3¢



domain by means of the followinj theoran.

Theorem 2.1: For any linear time invariant systam (2.2-2) the
Jisplacament § in the state space can always De raduced to the spatial
form defined in Def.(2.3) in which C, o< (t) are real valued.

Proof: Consider the equation (2.4-13). 3ut for the sets c;, c'{
this spatial form of § would have been in real space. Mow, consider

the 2xpansion of (2.4-13) in terms of real and complex <lasses, i.e.,

-Tt
e

- | ”
P Feuw = &G Cp+ ¢ &

(2.4-14)
It is therefore necessary to axpress (;(;in real terms o obtain the
r2al spatial form for § . Expand C; C; partiton wise and group the
resulting partition matrix products in pairs according to the complax

conjujate eigenvalues; i.e., consider pairs like
5 & hgu + P& B su
P e ; Bu + K, j (2.4-15)

(vhich corraspond to the pairs of eigenvalues A, ,-'SJ. ). Note that the
order x’,- of 3} and \’;" of 3:“ are aqual (), =v; ), because of the
conjugate property of the eigenvalue A; and eigenvector b, , etc..
Furthermore, £from this conjugate property (see (2.4-11), (2.4-12)) we

have the following:

— A - -

L d e ~ ‘, -
. aJ. . P = P . . = P (2.4-15)
4\ A 9+ J ) et

and hence
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(2.4-17)

Thus, the second term in (2.4-15) is the complex conjujate of th2

first
term; therefora, (2.4-15) becomes

T A ~ _TJta
s et € b P, Bu = Qﬁe[Pse g Q-Bu]

<2

(2.4-13)
where Re[.] denotes the real part of 2 quantity.

We now proceed

by
separating the real and imaginary parts as shown below.

Lot

. SR . 3T A AR | AX
)5=—5_‘-+«.UJ}PJ.=PJ P:,-:PJ-»LP.

J

(2.4-19)
where the superscripts R,I stand for tie r2al and imajinary parts,
respe~tively, of the quantity, Substituting for A;
(2.4-2)

from (2.4-19) in

ERY —)'t -A‘t
ezks e ' caN‘

-(-$‘+CUJ)t _aot
e e v

- e

it e_’""b (Cmu;t -3 .sMw;ﬁ)
Lt -Nt b Nt
=(€ e ‘c.sw‘.t )—C(e e ".s.‘nw‘.'c
(2.4-21)
JUsing (2.4-19) and (2.4-20) on the right side of (2.4-19),

[ P9
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~R {4t _nt
= & PJ e,-s‘&e_ N
~T 4t -nN;t

PJ.RBu. s.‘mo.;t —_—

A P AT .
( Pj B‘Lcﬂwdt + PJ B“s'"“"’,’t)

J-e..o_ (P eus.m.:’c—-P Bumut)

(2.4-21)

This can be exprassed in matrix form in terms of partitions, and hence

(2.4-15) can be written as

-Jit
[:P ,+;] e ' PBu

-3 t.
e o PJB'-{

R

i

¥

1

Thus, we see that the complex partitions on the

77 I

—

A
it =Nt
Qet'te ! <P;RB\ACA-$U3t

AT i
-+ P_, Bw S'-thjt)

5k -:‘t
Re’ e '’

AT

(2.4-22)

left side are sinmply

( P‘.’Rgus-‘nust
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replaced by similar real partitions »n the right side.

Proceeding in a similar manner (2.4-15) can be expressed in real
form, as on the right side of (2.4-21), for all pairs of complex
conjujate 2ijenvalues. MNow, we can rebuild the matrices in partition
form © replace (; and (I*in (2.4-13). Denoting these replacements by

A ~

C:, (n for (I', (u': respaectively, we can write (2.4-13) as

- "R
Pe tp'su = €1 G + &Y &G

=[‘1 2:] (:r (2.4-23)
T

where Cr, 3 are sets of old partitions which were real to start with
and 21, 421- are sets of modified real partitions replacing the sets of
complex wmartitions (;, C; . Now, the right side in (2.4-22) is
completely real, and therefore using this in (2.4-5) the state space

displacement, expressed in real domain, becomes

T -
éz/[(: é] r'(I dat
° A
e
e b [ [a] 4
jn.l

whera
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or,

in which we define

ey
P, P, P3 -~ Pl]
r -
_3'|t A
PBUL , 9= 4,2, -~,l)2.=(
e-J;'tazBu
Tt
L e [} pleu._j
[P| Pl Pz P’_ . s . Ps ]
i $,6 _NE/AR AT . )BUL ]
Qe‘ ;) (PC.-:w"t-t- P sinut
? e Wt -N{.(Pgsinult - ﬁzmult)sw 3.4-25)
H: -Nk( s.-m ‘c)B&
o} e{,_t e-N"t (Pfsn‘nu,}: - ?’zxc..u,_t) Bu
. ! . '
! ' | .
’ ' : !
2 e'fste—ﬂs‘t (s_,gcuus‘t + &:s;nwst)eu
Qes.slre-N,E (l‘s;sm% _ ?’s:c.u*t)su.
J® ‘pt' ‘['---.'s . )';'-gj"‘dﬂs GC.
i (2.4-25)
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c=[e -] =[x &)

- -
X (€)= | ()| = g
< () Z
‘: {E (2.4-27)
e dh(*)J

Thus, the displacement d can always b2 expressed in spatial form
(D2f. (2.3)) in rral space R" for the system (2.2-2) as shown in
(2.4-25). At this point it is helpful to summarize thz important steps

involved in obtaining this expression.
2.4.3 Summary

The procadure to obtain the spatial form (Def. 2.3) in real space
n

R for the state space displacement § for a linear time invariant
system (2.2-2) is outlined in the following steps:

1. The 2quation to work with is
T
J = / e teuwrdt
]

wher~ A, B, u € x = Ax + Bu,

2. Obtain the eigenvalues of A and choose real eigenvectars (and
qeneralized eigenvectors) for real eigenvalues ani complex
conjuaate eigenvectors (anl Jeneralized -2igenvectors) for
complex conjujate eigenvalues, and construct the transformation
matrix P so that PT'AP = J. Also, obtain P . The equation in

stap 1l can now be written as
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[ R

T TE
§=[Pe”  Tplauwdr
/]

Partition P column wise arnd ° ' row wise so that each partition

has \’,‘ columns and rows, respectively, and corresponis to the

diagonal block in e"“. In partitioned form:

T - -~ r Tt A T
§« J[F B F] | ABU® |
' RPN

.
.
]
.

e"j-ft. é' B "l('b)

L .y

If all eigenvalues are real then this is the spatial form for
§ in R“ given in (2.4-25), (2.4-23). On the other hand,
if there are comolex eigenvalues present then proceed
to step 4.

Consider the pair of partitions in either matrix in the
equation which onrresponds to a pair of complex conjugate
eijenvalues. Replace each one of this pair by a2 partition from
the same location in 21 or 21 depending on the matrix
considered. Repeat for the other matrix . MNow, & is redusad

to the spatial form in R given in (2.4-25), (2.4-25).

(V2
——
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2.5 Test for Complete Controllability of the System

In article 2.4 we were concerned with obtaining the spatial form of
§ in real domain R . In this article we will examine ths spatial
form of § and relate it to the controllahility of the system
(2.2-2),
2.5.1 Characteristics of the Spatial Form from the Point of

View of Controllability

Let us consider the spatial form of d as defined in Def.(2.3).
The time invariant columns c; of ¢, j=1,2,...,4, span a space whose
dimension is less than or egual to L where Lsn . I1f L<n then it
i= clear that the €; vectors cannot span an n dimensional space. So
any choice of the zontrol vector u(t) for any arbitrary but finite time
T can influence only those components of th2 initial state (or
disturbed state) vector which lie in the subspace spanned by the €
columns. As such we have no Zontrol over those components of tha state
vector which lie outside this subspace of the n dimensional space.
Hence, an initial state (or disturbed state) which is such that it has
one or more of these uncontroilable compunents cannot be brought to the
origin in finite time. Therefore, the system is nct <ompletely
controllable. This leads us to conclude that to avoid the certainty of
uncontrollability [/ must not be less than n, or L = n ani
Sy j=1,2,...,n are all linearly independent (abbreviated L.I.). “Now,
by demanding that C be a full set of basis vectors for an n dimensional

space we have created access to all n directions in the spasa, 1Is the

" e
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system now completely controllable? Since an initial state can have any
arbitrary component in each of the n diractions it is apparent that the
components in the n directions must be affected independently over a
finite time T if the svstem were to be.completely controllable. The
integral '/ :(j )t influences the component in the <; direction,
j=1,2,...,n. Hence, the scalar functions «(t) must be linearly
independent over the period T for complete <controllability of the
system. Otherwise the system is uncontrollable., Thus we can concslude:

l. It is necessary that C be nonsingular so that the system may be

controllable.

2. It is necessary that ;) be linearly independent over the

period T so that the system may be completely controllable.

3. The two conditions (1) and (2) together ars sufficient for

complete controllability of the system.

Note that there is no single sufficient condition here. That s
because we are discussing a hypothetical case in which £ may be
singular. In the next section we will show that the matrix C in our
spatial form is always nonsingular thereby making tne second condition
sufficient for complete controllability.

We will illustrate the second condition for complete
controllability by a couple of examples.

a. Consider a system with scalar control u(t) with all eigenvalues

real and n independent eigenvectors (mo gJeneralized vectors), so that

e R At



=3taT . AT )
c; = b, X, = e b; bu, where b; , b, , 2tc. have the usual meaning
and =8, Mow, if there are two identical eigenvalues, A; =3, , and

the rast distinct, then

T T
[} )

.
: i AT -t el } - Ne
=hbib fudae + b hﬂbb ue My

4

(O (BB ] e

= é JTQ e.- )‘i‘ttur‘

0

A
Thus, two dir-ctiuvns S; v S collapse into one new direction ¢ and

id
the spatial form is otherwise unaffected. This indicates loss 2f a
basis vector and therefore leads to uncontrollability. Here, the fact
that )J..)M _ made x; (&) and Q(J‘H(f) linearly dependent (see
Gramian test .ater).

b. In example (a) consider an mxl multiple control u(t). Taen

T T
c; / (D)ot + ¢, f"‘s.\“"’ dt
[} 0 i} - ).t
A A - Ny
=[b; (378) + b, (5, s)] [we ™ dt
(]

The brackaet consists of m vectors which are )linear combinations of ¢ ;

and =z, . If there are less than two L.I. vectors in this m=set then
I

e ey p——— " . B,
B "
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it indicates loss of a basis vector, i.2., the system is uncontrollable.
Otherwise it is controllable. The independence of <, (&) is rele*~d to
tha number of L.I. vectors in the m-set.

Another observation here is, if there are /[ repeated =zigenvalues
then we could combine [ vectors of C in the same manner as in
axamples (a) and (b). In this case, in example (a; the result is always
a sinyle vector & (indicating oollapse of [f-—1 vectors) with the
conclusion that it is an uncontrollable system. In example (b) as Lomg
as . &m there is a possibility that the m-set will mot degjenerate
below § L.I. vectors. If > m then f£-m vectors have already
collapsed with the certainty of uncontrollability.

In this discussion we have highlighi:ed the characteristics of the
spatial form d from the controllability point of view. In the next
corple of sections we will derive rigorously the necessary ani
sufficiunt conditions for complete <ontrollability for linear time

invariant systems (2.2-2).

2.5.2 Nonsingularity of the C Matrix

In section 2.5.1 we examined the spatial form of d in its most
general form /Def.2.3) for characteristics of controllability. wWe
concluded that two necessary conditions have to Dbe satisfied
simultaneously to juarantee complete controllability of the system. In
the following theorem it is shown that for the spatial form of 4 we

derived in (2.4-23) (or(2.4-25)) the C matrix is always nonsimjular.

e e s e b S it b i b -
» . e e -
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Theorem 2.2: In the spatial form of the displacament d in resl
soace, derived in thaorem 2.1 the € matrix is 3lways nensinjular.

~roof: If all the eigenvalues of the system are real then the C
matrix is the transformation matrix P and hence is always nonsimjular,
But, when there are complex eijenvalues present the C matrix is sligntl
modified, i.e., a pair of complex conjugate eigenvectors (or yeneralized
eigenvectors) are replaced by the real part and the imaginary wmart of
the vector in the pair which ~orreswonds to h; = —f; + iw;, All we
need here is to prove that all the n wvectors of C are linearly
independent (their positions in T do not matter).

Suppose that there are g pairs of complex conjujate eigznvalues
(n-2q real eigenvalues). Let us rearrange the columns of P so that

Eiew = [PI P, Paj
(2.5-1)

where P, (nx(n-29)) is a set of 2ll real eigenvectors (and gJeneralized
eigenvectors) and P, (nxq), P, (mxq) are sets such that for every vector
in B, its conjugate is in P, /conjugate property of eigenvectors).

Thus, 1='3=-'£53 . The inverse of F_,6 can be obtained by corresponding

rearrangement of the =~ws of P~'. The matrix Crew (rearrangyed form
of C) is obtained simply by repiacing P, and R in Rew bY
pﬁ

* and PLI , respectively, where Pw P:d'ix . We now have the

following matrices:

Pneu = [Pl Y E:.]

-\
. [P: R¥ P:.IJ } and P, (2.5-2)

- w

A st o L r . . o —
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N
3ut P 9““ =  (nxn), the wnit natrix , and hente substitutiny for
c P from (2.5-2)
4 new
- -1 -l =
- 51 5 ]
Pnew neu: new [P‘ p:_ P;_] -[P'!u Pl Pl\eu Pz_ Pncu b
‘_: = diag [E, E, Es] (2.5-3)
L
i
; where E, E, E; are unit matrices of order (n-23), 3, 3,
it respectively. Equating the left side and the right side paftii:i:m wise
i in the above equation, we have the following result:
1
; p-
b Pneu Pl =| E ) .Q“Pg = ; Pnew Pz"
" 0 €,
O o) ELJ
'w
(2.5-4)
Now, substituting for CM_N from (2.5-2),
R -\ I]
-1
Pneu = neu [P P ] [: Pl P“e“ P:_
(2.55)
- r -
We can obtain P~' P , P ' PI as follows:
hew L new 2
-\ -l - -\ - R
Prew B ¥ Prew P = Frew, (P,_-!-P: ) = Pneu (2P )
-\ R -t -t -
Pnenpz = 2 ( P....,Pz "'Pneu P’-)
L N\
‘ and using (2.5-4)
14
: ¢
et T



-1 R
= 4
Pnew Pz -2
El.
(2.5-6)
E"J
Similarly,
Prew P:. =";7_ ( Pnew Pz.- Pneu P‘L)
or, using (2.5-4)
-\ T 0
Pnew P?. - ",‘)'_L
E.
(2.5=7)
Substituting (2.5-4), (2.55) and (2.57) in (2.5=5),
= =
' e = | E o 0
new new -
0 1§ "}_Ez
0 %_E:. .;.: E, (2.5-8)

The rank of the matrix on the right side in (2.5-8) above is n, and
hence Pn"'“ Cheo, s nonsingular., Therefore, Creu, is nonsingular.
This proves the theorem.

Thus, the first necessary condition that C must be nonsingular to
avoid certainty of uncontrollability (see secton 2,5.1) is always
satisfied for the spatial form of § in real space R". This leads us

to conclule that the second necessary condition, i.2., the raquirement
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of the linear independence of the scalar time dependent functions «; (%)
of &« (t) over the period T is also a sufficient condition for complet2
controllability of the system. Hence, it is only necessary to test for
the linear indeperdence of the «;(t). But as it stands now it is not
easy to conduct this test, and it is desirable to derive some conditions
which will be necessary and sufficient to juarantee the independenca of

the «;(f). The next saction is devoted to this objective.

2.5.3 Necessary and Sufficient Conditions for Completa

Controllability for Linear Time Invariant Systems

In this section we will derive a set of necessary and asufficient
conditions which will guarantee the independence of o.(t) over the
period T, thereby juaranteeing complete controllability of a linear time
invarian: system.

For the spatial form of & in real space (see (2.4-25)), from
(2.4-25),

-O(({:)" (K

A

Oy

where Cn is the set of vector partitions {e"’?" I;;Bu} for all

»ec and (; is a similar set of pairs of vectsr partitions

[

2 e"‘te-""t ( ?’;RCn wt + I?D“:sfnwjt)ﬁ\&
A A
25 Mt (B sinut — PTenat) Bu

ot wienn e ks 4w e o
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for all 2, 3; @ ¢™in wnich A; e~ ;4 (see (2.4-24)). Each
vestor partition consists of V; =2lements (scalar time dependent
functions) where ¥; is the order of tha Jordan block J; . Within each
vector partition all the V; elements are linearly independent over the
period T provided there is no zers element present. (Thase elements are
manbers of a Jordan chain; each elament diffars from the other in the
highest power of t, because of the polynomial in t in the exponential

Nt (see (2.4-3)).) Furthermore, between any two vector

partitions in (‘E if the sxponential factor e Ak

of one differs
from that of the other then these two sets are linearly independent of
each other over the period T. Similarly, between any two vector
partitions in Ell if either {; or w; of one differ from that of the

e%%  or the factors

other, then due to the axponential factor
cos w;t., sin w;t , these two sets arz L.I. over the time T. Alm
any vector partition of ¢ 1is L.I. of any vector partition of ér
over the period T due to the presence of the circular functions of
in é][ . Thus, the test can be narrowed down to checking the vector
partitions in &y and 21 separately, and 1) those partitions in
Cq for which }; are identical, and 2) those partitions in ;x
for which both {;,, «; are identical. A further simplification is
obtained by using the Jordan chain property for the 2lements of a vector
partition, i.e., {f the V; th element of one vector partition is
independent of the J; th element of another vector partition then the
two sets are independent of each other. Because the 2lements of a

vector partition are a chain Luilt over this 3 th element. (An

analogous reference is the ! .-Jation vector of Def.2.4. Actually <he
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x’; th elament is made up of the foundation vector.) For conveniance we
will call these ;th 2lements in each vector partition as "foundatisn"
elenents in «(t). Thus, finally the test for linear independence need
be conductad only for the foundation 2lements of:

1) the partitions in g for which 2; are identizal, for all

A €eC iand

2) the partitions in ":I for which both f;, «; are identical,

for all X €™,

Let 33 (in ¢ or €") denote distinct eigenvalues of the system,
and let M; be the number of Jordan blocks J, (each J, associated
with 2 A, , k=1,2,....,r, £ £ n), for which 2, are identical and
equal to 545 . Let S5, be sets of foundation elements of «(t): 1)

~

Correspording to 3«,’ for S,- € ¢ , and 2) Corresponding to A, 3,

2 7o

A
for M &€ *. since each Jordan block gives rise to one foundation

A
element each S; contains M; elements if O is real, and 2M;

elements if }; is complex. For the complex case, S; is a set of all
elements for which both ¢, and w, (A == xiQ,) are identical. Let
Fa)
Yj denote: 1) sets of foundation vectors (see Def.2.4) lpL"

corrasponding to all the Jordan blocks J,. associated with 3 for

J
. . AR AT
3«5 € { , or 2) Sets of the real and imaginary parts ]pLK ' }’,_n of

A
the foundation vectors lpL“ corresponding to all the Jordan blocks
A A
Tk associated with either one of a complex pair of 3;, A € ct.
The sets Y, contain M; vectors (columns) for 3_; ¢ C and  2M;

A
vectors for ), € ¢™ . Or,

A

7;’[.:" NI 77 B 4
R r f& T S A . (2.5=-9)
[y o 9 oo 3,5], ) € ¢

&

¢ s b i, ke RN oot
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A
wiare Y, or 9;‘, \jf are used in place of ioL, ¢ 2LC., to simplify
notation. MNow, usimg (2.4-2),(2.4-3) and (2.4-7) in (2.4-24) for tha

foundation elements of o((t) (in = (Ar ) the sets S;

;  San be written

as follows:

for 2. € C

J

S; = [:z ef"b{( v,‘)‘rgu et + QJ'I')TB\A sinw; t },
2 e"' t-{ L\,'*)Tew s.'m.?j-t - le)Tﬁu Ca-:':i.s't},
25 {(9yTonemdit 4 (930 sindst ]

. . T A
R ee;b {("5:)1-8“5'."“’,){: — ( 33:) BuCﬂwj't })

J

2 e {( 3/:,)-"Bucﬂ«f:jl:* ( s,f)Teu.s;n ' ;’c}
2ot [ ) Bu sint — (y,ﬁ)-reuc.,:;jt} ]

A ”
for A; € C (
(2.5-10)

A

Note that the elaments of S; are scalars. For A,€C, S; can be -

axpressed in th2 matrix form

N ok

Ox 3"(31\.5'& u“wi:";;"‘,"“-‘ e
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where y.:'-z'a*t.w-uTB"yi »2tc., and Y, is as qgiven in (2.5-9) for

A

A . .
A, €EC . To express SJ- for 2, € ¢ in a similar form, let
Uy=Ucesdyt and U = usindt . Since each elenent of S; is a sum of
two components, SJ can be written as a sum of two sets (matrices)

(with a slight rearrangenmt*for convenient algebraic signs) as shown

below:
“,-t T T T R z R z R
SJ-:'--IQ K‘\B[-vl)%l»-vz,"i-)"""-j/“j"j/"j]
e't-r +f R 2 R T L I
te” 4 B [51 Wl %o ””3/'.{ "’/‘a‘
(2.5~12)
Further, if we define
7 7 / ,
K=°LC‘\3[K’k,K‘----/A;HM‘.kS--',k]
K/z Q \
then (2.5~12) can be expressed as
e‘t T 7T L A
SJ=22‘[ qb] Bak ))Je(‘
T
B Y.
v; (2.5-14)

TT™e order of 2laments in a set does not affect their
relationship with respect to independence or dependence.

[ A ]



T LR

AR L .

L

I

Wasre Y. is as defined in (2.5-9) for ); € ",

J

The time dependent scalar functions of S; in (2.5-10) are said to
be linearly independent over the time interval (2,T] if the Gramian
matrix associated with §; is nonsinjular. More details on Gramian
matrices can be found in [J]. The Gramians G; associated with our

sets S; are given oy

T T
G; = / S; S; (2.5-15)
[+]

Substituting for 5; from (2.5-11) and (2.5-14) and moting that B,Y;,X

are time invariant, (2.5-15) takes the form

A

M(8Y,)) , €

-T

J

c
[(B?YJK)T (8, )T] M | BY, k" , »; € c”

BTY;J
(2.5-16)
where T A
M = / 2Nt Tt , 2, € C
0
L . )
' »
M =/4e”* Wl WMy [dF ) Xec
T
° Y, “bq:-
(2.5-17)

A A
The matrix M is of order m for A, € &€ , a* “f order 2m for % € c*.
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A
The Sramian G; is of order AM; for A; €€ and of order 2M; for
:AJ e 7", sence, for linear independence of all «,(t) in (%),

i=1,2,....n, all the Gramians G; must be nonsinjular, i.e., rank G;

A
must be equal to My for )\ € £ , and rank 5; must be equal to

2M; for %; @ £*. From (2.5-15) and (2.5-17) we can write

Yank GJ' & vank M
Yank G < s A
;i [ vank BY; 2; € C

and

yank GJ

A

rank M

-
Yank G; T rank Byjk

v (2.5-13)
BY

»
)355

Now, we are ready to formulate the necessary and sufficient conditions
for complete <controllability of the system. We prove this in the
following theorem.

Theorem 2.3: In a linear time invariant system

).( = AX +BuW
(2.5-19)

where Xxe R"and we R": let J be the Jordan canonical form of A and P be
the transformation matrix such that P"AP = J, Let Jn: be the Jardan
blocks of order ), . Associated with each J, is an eigenvalue

~
, k#1,2,...,0, & n. Lat %, j=1,2,..., 4 denote distinct
K J




eigenvalues so that As¥. Let M; be the number of Jordan blocks
J, fEor which A, are identical and equal to 3.1 . Let ¥ he: 1)
Sets of foundation vectors [see Def.(2.4)] h_‘ corresponding to the
A A
Jordan blocks 7, associated with A; , H;€ & , or 2) Sets of the
N A . A R *T .
real and imaginary parts of h_‘ (i.e., h_n and h." ) corresponding

A A R
ts the Jordan blocks 7T, associated with 2, or 3., 'A_;,)_,-ec».

i 3 ?
§ hen:
1
l. The necessary conditions to be satisfied so that the system may
be completely controllable is
A
moz M M diskineb X deynol (2.520)
whiere m is the maximum available number of independently
variable scalar controls u (t) belonging to u(t) (i.e.,
‘W dimension of u(t)).
. ' A A
Note: For 'Aa-e(* only one of a pair of complex <conjugate A; ,
3.4- , need be considered.
2. The necessary and sufficient condition to be satisfied so that
the system will be completely controllable is
T A
Yank BYJ = yank y5 -/‘13 Y distinct 2; € ¢
-~ A
T »
~rank Bx‘k = ~rank y‘; = 2/&13 M disbinet )J' el
.
BgY.
7 (2.5-21)
A A x
Note: For ;€ ¢ rank¥; = M; ad for A €€
- A
rank Y_i = 2/\3 . MAgain for )3 € [" only one of a pair of complex
TR IR IV
= OF POk DL
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A A
conjugate ); , A; nead be considered.

Proof: 1. Necessary condition - To prove the necessary <condition
(2.5-20) we will prove that if this 1is not satisfied then it is a
sufficient condition for uncontrollability of wie system. Hence, assume

A
mo< M foy Some Ay, i=1z..1 (2.5-22)

Consider the two cases:
A
a) 2, € c
. . . T, .
The matrix B is nxm and Y¥; is nxAa, so that B'Y, is mxM;, and
v T
rank B YJ. £m., 3But from (2.5-18) rank GJ € rank B YJ. . Hence, if

m < M

~ran K GJ' L vYank BTYJ | M <,M_;
Yank GQ; < M; (2.5-23)

Thus, the Gramian is singular for this 3;, &/ +which indisates
uncontrallability of the system (due to the existence of a dependent set
SJ- in < (&)).

n e c”

: : . . o o T, .
The matrix Y; is of dimension nx2m; so that B'Y; is mx2A;.
From (2.5-13) K is a square matrix of order 2Mm,, so B.rYj X is also of

dimension mxz/nj. If we call

-
/o= | B K

T

&Y (2.5-24)

then {, is of dimension mezlus. And rank ){.s 2m. 3ut from (2.5-19)

< mem———
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rank G. < rank 1‘ . Hence, If a<M;, l.e., 2m<2pM;,

~Yank G; £ vank '/; £ 2m < 2 M;
or

Yank G; < 2My (2.5-25)

i.e., the Gramian is singular Sor this ‘:'\\;, ec’, and this is sufficient
condition for uncontrollability of the system.

This shows rhat the condition m <A; for some %\3 (real or
complex), 3j=1,2,....,£, is sufficient for uncontrollability of the

systam. Hence, we conclude that the condition

A
m >,/qj b+ distinet )J , J= ',":""/L

is necessary so that the system may be completely controllable. This
proves tha first —art of the theorem.
2. Necessary and Sufficient Condition

a) To prove the necessary part consider the ranks of a‘ryl- and )’,
whose dimensions are mxm. and 2m2M; , vaswectively. If Lank
BTN/_; #M; then rank BT)'J <M; . Similarly, if rank f, #2M; , then
rank 7’J < 2M; . Hence, from (2.5-13),

A
T
‘Yan k GJ- € vank BY, <M )_; € ¢

A
Yank G;  vank /‘. < 2M;, K €C

Or,



Yan k GJ. < 2/43 ) N e (
(2.5-26)

and from the first part we know this leads to uncontrollability of the

A

system if (2.5-26; is true for any 1 .

SR

Hence, the necessary conditions for controllability are:
- A
Yan k Byj =:/“\J~ for 2; € c

A *®
“rank JJ. = 2/‘14- for ')J' € ¢ (2.5-27)

which iaply

map for al X e £, " (2.5-28)
M, rank Y, is M; for SJ- €L , od2p; for ‘3«; e, vecause Y;
are sets of left eigenvectors or their derivatives (real and imaginary

parts; for this case the proof of L.I. 1is similar to theorem (2.2)).

Tharefore, (2.5-27) can also be expressed as:

rank GT‘/j = vank 73 = M. Y. € C

A
~yank. f_; = vank Y, = 2M;, X € < (2.5-29)

b) To prove the sufficient conditisn consider the quadratic form ir

+ . . A
V, VGV where: ve R por i e £, orave R Ver ;e €0

and G; is as given in (2.5-15). We can ther write

] Ipm— T ——— BN

i

\

e N G ——
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Via;v = [(8TY;v) M (8Ty,v)

(YsV)TM (f.s") ) }E€C  (2.530)

where M is as defined in (2.5-17) and {J as in (2.5-24). Also, let

T A

z=|BYyv , 3 €¢C
. v N (2.5-31)
J R -

A

were z€R for ;;G € ,amd 2 &R for 2; € ¢". Ten
VIG;ve 2TM2 (2.5-32)
It is now useful to recall the concept >f controllability itself.
When we ask if a system is completely controllable we imply all the
freedom, if necessary, in the choice of scalar controls U®for a given
number of them (i=1,2,.....,m, 1i.e,, the scalar controls
uL(t), i=1,2,...,m are independently variable. Given this freedom we

ask if th. system can ever be controlled. Hence, we are at liberty to

use all the freedem available for a given set of scalar controls.

Now,

'r A A T A
. -a: t .
Me § () (M) e 4 e 6
0

T 'y %'E ) ‘t-r
R Sy B
M = f :,‘ei, C-slsst)“ (2™ "emw; at
q A
0 ¢, L
(2% 5nd,t Y u | (2e” sindyt) W (2.5-33)

X €C

T -y - LE ! -

Sy

I A
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We see that M is a Cramian matrix for both cases associated with a set

f(t) of scalars, i.e.,

A A

-2t - .
fer=) e ' u , 2 € c

A A. \
[(o'l efi tc.:&;{: )u‘r) (2e% l-dimq,-t ) L\T]

5; € 6"

) (2.5-34)

Since W,®)can be varied independently for all i ¢*\1-m over the period
T, the scalars of f£f(t) are also independently variable over T.
(exponential factors do not affect the independence of 4, , and Conid; b
and 8\'m:)3't being orthogonal functions preserve the independence of
‘f';)' As such the Gramians associated with sets £(t) can be made
nonsingu’ r. Hence, assune M can be made positive definite (M > 0 ).

Or, looking at another way,

.
Fmze 21/ £&) 416 At} 2
]

-
= [ {0 fwadr
[\

-T-

= f W) Wit)
]

(2.5-35)

whaore z is a constant vector, and w(t) = f(t)z is a scalar. If

2Mz =0 for ali time t & [0,T] then from (2.5-35) w(t) = 0 {s the

only nossible solution, or f(t)z=3. B8ut f(t) is a set of

scalars which can be varied indenoenden:ly over tr2 neriod T.



So for this equation to be true for ali time t l[O,T], z
must be zero. In other words, if z#0, for ar indecendent

set f(t),

T

/ u(t)zdl'
0

can always be made positive for a finite time -T. i.e., e™Mz >0 '
2#0 . Thus, a positive definite M can be assuned as v.thin our
capability for controllability purppse. Hence, assuming M >0 , we
know that if fTHiec , then 2 = 0 is the only solution possible. Or,

from (2.5-31),

28y veo A €C

z=0,v =0 , A €C (2.5-36)

s ™
Since v is M. x1 for 3¢, if raak BY,=/; then Veo is the

A
mique solution to BT*[‘.Vso . Similarly, v is 2M; x| for 2, ¢ C:

and {f rank {,-2./1,. then v=o0 is the only solution to YJ.V:O . B
J

this implies vso0 is the only solution to VTG3V=0 (a,;\e.o). This
will require G; to be nonsingular. Hence, the conditions (2.5-29) for
all 9«; € ¢, ¢” are sufficient to guarantee nonsingularity of all G; .,
Combining with part (a) the necessary and sufficient conditions for
~amplete controllability are, therefore, given by (2.5-29). This
completes the proof.

In the above theorem we have derived the necessary and sufficient
corditions for complete controllability of the system. Although the

necessary condition (1) is implici* in the necessary and sufficient

————
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corditions in (2), the former can serve 2s 2 quick and simnle
check to see if the system is definitely uncontrollable.

Even though the above conditions were arrived at by a rather
lengthy process their application in testing for the complete
controllabjlity of the system is not very complicated. The first
necessary cordition is vel;y simple (involving only counting of the
Jordan blocks) once the Jordan canonical form is obtzined.

In the second -ondition the rank test involves orly mu=sh
smaller matrices (mx)g,ﬂx%ﬁj), and m ani M; are zenerally
much smaller than the dimensicn n of the system. This will
redice numerical errnars in the comnuter methnds. Morenvaer,
the first tast arnvides a mirimum numher Ffor the s-calar
controls uy that is chsolutely necessary so that the syste~

may be ecnomnletely controllable.

In this section we have been concerned with the independence of the
scalar functions of «(&) in the equation for ¢  in spatial fom 1in
real space. We derived the necessary and sufficient comditions which
wuld gusrantee this indepsndence. In the following we summarize the
practical steps involved to comduct the test for campl ete
controllability of the system.

1. obtain the Jordan canonical form J of the matrix A. Count the
nunber of Jordan blocks associated with each distinct
eigenvalue. If this number exceeds the dimension of the
control vector u(t) for any dist.nct eigenvalue then the system

is certainly uncontrollable. 1If it passes this test proceed to
step 2,

ORIGNL PLut
OF BWuige M

N w——————



2. set up the Y; matrices from the foundation vectors
corresponding to the set of Jordan blocks associated with each
distinct eigenvalue ;3 . (For complex 3; the real and
imaginary parts of the foundation vectors must be used.) Test
the rank of BTYi for all 3; €  , and test the rank of

{J- for all 3,- € g * . If their ranks are equal to the
ranks of Y, (for ¢, ¢® as the case may be) for all
distinct a ; then the system is completely controllable. If
not it is uncontrollable.

Some implications of these corditions of controllability are worth

noting. Consider a scalar control system (m= 1, u= u;). From the

necessarv corditions for controllability, we have

ﬂ,sm-i

or
M=l (2.5-37)
This implies that no two Jordan blocks J . of J sn ’d be associated

x ! k=1,2,e0..,r must all be

with the same eigenvalue ‘33 (i.e., 2
distinct), in order that the system may be completely controllable.
Further results can be stated in the following thecrem.

Theorem 2.4: If all the Jordar blocks J,., k=1,2,...,r, of the
system (2.5-19) are associated with distinct eigenvalues S,— sl )=
K, then the system is crmpletely controllable if none of the ccmponents

of the vector o({(t) is zero, i.e.,

() Zo for any i, i * 1,2,...,n (2.5-38)




Proof: From theorem 2.3

/‘J‘ = 1 ’ j = k = 1,2,.-.0,[, fs n (2.5-39)

where /‘13 is the number of J,  corresponding to the distinct eigenvalue
A

)j . The necessary and sufficient corditions from theorem 2.3, give

van k BTyJ. = Tank \/J. = 1 , 3)- e £
A a
vomk ], mvank Y; =2, X4 €€
’ (2.5-40)
where
-
b
- o]
B Y, !
and
Y; = )Y , € C
R =
[3 5" ] , A €c
(2.5-41)

in which y is a single foundation vector corresponding to a Jordan block

R X

J. ;Y .Y~ are the real and imaginary parts of the foundation vector

L *1'Y

y ory (algebraic sign for the imaginary part ignored) corresponding
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to a pair of Jordan blocks J; , J; associated with a pair of
A =
complex conjugate eicenvalues 2;, 3; . Hence, using (2.5-41)

in (2.5-40)

rank BTY.S = rank BTy =4 for all 3\; € (2.5-42)
and
[ ]
R T I o |
‘Yankfa,=-rtmk [33 33][_' o] = 2
-
8 3‘ BTBI
- -
4 Y
4.'7 all )5 € (
or,

- T e A ¢ (l
Yank -8y B8Y = 2 foe all 3
T
gy By

(2.5-43)

A
Por real )J- ’ sTy is an mxl vector, and hence

T
vank By < |
g O

if and only if the vector BTy = 0 ., But from (2.5-1ll1), this means

A
- '& N
Sj s & )’ uT BT\/J. g O fer seme a; € (4

(2.5-44)

S Al e e —— bt T 6 e S

)
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And, s, is an element of &{t). Thus,

A
vYank BT5 < | fov seme 3_; € (2.5-45)

if and only if a component of oX(t) is zero. For complex A; , the two

vectors, 2ml,

- 373: gy~
8yt 6y

)

T T

are L.I. if ary one partition B y’l or By> is not zero, i.e., these
T

are linearly dependent if and only if By =By =0 (this can be

proved easily or observed directly). Or,
T I T.R a € ¢ *
Yank [-B'Yy BY < 2 for some )
T.I
eT:’R 8'Y

T 2 *
if and only if By" =By =0, fwe., J, =0 for mme A € & .

But from (2.5-14) this implies

“.t A »
S;‘ - & es" [u: q:] 7/3 = 0 -Pw Seme A; € 4
(2.5-46)
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And SS is a pair of elements of o{(t). Thus,

A «

if and only if a pair of components of &(t) is zero.

A

This shows that for all J; , real or complex, the ranks of BTYJ
or {3 are full if there are no zero elements in o({(t), and full rank
for these matrices is a sufficient condition (theorem 2.3) for complete
controllability of the system. This proves the theorem.

In this section we have discussed the spatial form from
controllability point of view, and proved a few useful results. Now, we

are ready to proceed with the construction of an approximation for the

recovery region & .



ST

2.6 Approximation for Recovery Region

In section 2.. we discussed the recovery region & and some
approximations for 2 dimensional systems (Fig. 1,2,3). The
approximation was in the form of a parallelogram enclosing & , and
thus forming an upper bound for A . Here, we will extend the
parallelogram concept to the n dimensional space and obtain an n
dimensional parallelopiped. The n directions needed to span the space
ccme from the columns ¢; Oof the C matrix in the spatial form for g
(see(2.4~25)) . Thus, a set of n vectors in these directions will form
the semijaxes of the n-D (D for dimensional) parallelopiped. The
magnitudes of these vectors are provided by the magnitudes of the «c;
vectors as well as by the components of «(t). Since we seek an upper
bound of the region for a finite time T with bounded controls, we will
maximize each time integral component of «(t) for the period T using
the upper bound for all the controls u, , i=1,2,...,m, i.e.,Ju;l =1 .
Thus, each semiaxis of the n-D parallelopiped represents the maximum
component a state space displacement can have in that direction in order
that it can be brought to zero in time T. We mentioned in section 2.3,
for 2 dimensional case that at least one point in the recovery region
R lies on every side of the parallelogram. Similarly, for the n
dimensional case at least one point in & will lie on every surface of
the n-D parallelopiped each of whose surfaces consists of n-l
indeperdent vectors as edges which are parallel to n-1 of then
semiaxes. The semiaxis that does not hav: a paraliel vector in the

surface is the one on whose tip this surface rests (semiaxis is from the

-t ye
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origin to the center of a surface). Of course, an n-D parallelopiped
has n pairs of parallel n-1 dimensional surfaces.
Let &” represent the approximation, the n-D parallelopiped, to

the recovery region &, which is to be constructed from the equation

(spatial fomn (2.4~23))

T
ch/«(e)dt
0

e -
=[cl & < Sy ] j.('('ﬂdu.
[]
J < 6y d
[}
- (2.6-1)
jo(hu—)dt-
|0 .
\ Define
-
= [d 1 - 7, ]
D, = diag [7, 1, , =) Tn ]
T
{J = M&xja(s(t)d\r , t G[_OIT]) )\\;\SI)
o (2.6-2)

t‘:.l"l.,..-,h 5 ng‘g'...’n

In terms of these notations & > can be denoted by a set of n vectors

{‘. ¢; » J=1,2,...,n in matrix form, these vectors forming the semiaxes

of the n-D parallelopiped. Or,

R‘E [i‘cs R {,cz » Tt {"C“}



\‘

=[°\ Cpovve ch]d"‘ﬂ [‘,;{;:"'){N]
= C Dy

(2.6-3)

To obtain an approximation to the degree of controllability (° of
the recovery rejion j? w2 have to get the minimun of the distances from
the origin to all the surfaces of the n~D parallelopiped. The distance
from the origin to any surface is measured alony th2 nomal to that
surface from the origin. Then the normal distance from the orijin to a
surfaceof the n=D parallelopiped is the camponent of its tip vectot*
along the nomal to this surface. In the following theorem it is shown
how to obtain the normal distances to th2 surfaces of an nD
parallelopiped.

Theorem 2.5: Let F =(a a, .....a,] presribe an D
parallelopiped in real space whose sa2miaxes are given by the linearly

independent nxl columns a; j=1,2,...,n. Then the nomnal distances

dJ to the surfaces of this parallelociped are given by the
reciprocals of the magnitudes of the coiumn vectors of (FT)'].

Proof: Let (F)™' = (3, 3, .....3, ) in which , , 3=1,2,...,n

are nxl colunns. Since F'F=E , the it matrix, we have

~T ) - r
F-‘Ft ro‘;r [q‘ qz ....Qn] =11 0
oy '
: l
aT o .
nqa ot - ! 1

D B

* .
A tio vector of a surface is the semiaxis on whose '

“he n-1 dimensional surface rests. This surface doag
not have edges sarallel to its tin vector.

b/
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'isqk=5u y 3% % nokELE ey R
(2.5-5)
where 4 is the Kronecker delta. Eguation (2.5-5) is the
restatement of the fact that EJ is orthogonal to all a_» k #3j. In

an n dimensional parallelopiped a normal to a surface is orthogonal to
n-1 vectors of which thz surface is composed of. Or, a normal |is
orthogonal to n-l of the semiaxes. Since 'a'i is orthojonal to r-l of
the ak‘s, it represents the normal dirsction to the surface whese edges
are parallel to a, for all k except k=j. The tip vector for this
sur face is a; and the normal distance d; from the origin to this

sur face is the component of 3; alony the nommal direction 3iven by

~
aj . Ol',

{ = (a;,%;) _ @ a;

tOIE;,R) I o N (2.5-6)

A4




ad using (2.6-5)

d,,' - ‘| , iz, o, (1.6-7)

whare \\ '3'3 | is th2 majnitude (Euclidean porm) of the column vector ?3
of (F)™'. Tis proves tha theoren.
Now, from (2.5-3),
-1

[UQ')TJ-“ & Drr] =(CT)-‘DY-

(2.5-3)

Let

=[3. ?l S 2"]

9 =1l 3, W=V,

) (2.6-9)

A
whzce g, dens>te wiit vectors. Than
J

[.Qﬁ.fj_\:[é\ 51‘ o an] 4‘1‘3‘:"7'": 3.1, "’n”]aL [ f:'_ ;/t']

A A \\‘z. 52 !3 ~119m J
= A —————
[?' h ?"] [ T (2.6-10)

Using theorem 2.5, the nomal distances from the orijin to th2 surfaces

of tha region K’ are jiven by

17,' (2.0-11)

The approxination (o' of the dejree of controlladbility (° from
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the parallelcpiped bound & * on the recovery region & is

@’ min d. Seiny e, (2.6-12)

J
This approximate dejre2 of controllability can be made arbitrarily tight
by including additional directions in thc n dimensional space, Suppose

e is any desired unit vector in on2 such direction, then maxinize

-

| e'c xinrde (2.6-13)
-]

over th2 piriod T with (u.\=1, i=1,2,....,m. This guantity represents
the makimua congonzrt in  the diraction 2 of 3 state in tha recovery
rejion R , and h2nce rno pints in R lie bayons the surfaze orthojonil
to e and a distancze given by (2 5-13). This is similar to what we
discusszd iIn section 2.3 ir a two dimensional state space. By
consideriny 2 3.% of such @ liractions ¢ sa2t of distances (.5-13) -
obtainzd., Let (3 be the minimun of thes2 distanzcs. Thon an iaproved
estinate of the dejree of controllability is ("’” = nun( p' ' ('5 ), and
P" > [@ can Dpe acde arbitrarily <lose to th2 tru: dejree of
controllability @ by picking a suffi-ient nunber of directions e.

The approxinate dejres of controllability (0' in (2.6-12) will go
to  z2ro w2 thd  spysten becoawss uncontrollable as {ndicat:iu in the
following theorem.

Theoren 2,5: Suppose J is ta2 Jordan canonical form of A i.. the
systen (2.5-'19) and J th2 Jordar blocks associated with the

K

eigenvalu2s )‘u r %21, 2,.00,r, £ & n. If the eijenvaluzss N are

S, g N



distinct then the approximate degree of controllability P' is zero if
ard only if the degree of controllability (° is zero, i.e., ("' based
on the minimum normal distance to the surface of thes paralilelopipzd K’
will be zero if and only if the system is uncontrolladle.

Proof: Tae normal distances to the surfaces of the parallelopiped

.fl’, from (2.5-11), are

d- .—-L—- :J.:Il-- ."\

T

\

wiere a/,' are defin2d in (2.6-2). Since (° = min d; . it will be
J

22ro if and only if some d,‘ =0 ,0our 3 =19 if and oaly if f‘ =90.

Fron (2.5-2)

T
{J- :M&x[«)(*‘df ) tELO’.rJ’ ‘H;\"I (:""-”M
s .

ad ¥, =0 ifandonlyif o;=0. Tws, " =0 if and only if
sone X; =93 ., Froa thec-ea 2.4 th2 system is uaconcrolladle if and

only if thz.e exist une or more z2ro> coxxpoaants in oKk (t), i.e., some
°<5(t) =0, Zenze, (3. = g if and only if the systen s
uicontroliable, Tais proves th2 tiedred.

Waan two o1 more Jordaa blocks are assosic..d with th2 same
eigenzalu: some modificetion is necessary so that (" ~4ill be zaro if
and only if the systen is uncontroliable. We adopt what s known as
sinjular wvalu2 decompasitior *> madify the foundation elaaents

correspondiny to tha set of Jordan OLlocks associated with one

eigenv2iue. ¥2 denoted such 3 set as 5; (see (2.5-10) and will use

@



the s=ame temninology for all quantities unless otherwise mentioned.
Similar to the approach adopted in transforming complex vectors in the
spatial form to real vctors, we will group the vectorssff d thac
contain the 2lerents of S; and tranform this set into a similar set so
that the same process of replacenent in the spatial form can be adopted.
T2 n2w elments of &X(t) will gJgive the property desired, we will
illustrate the process for real eijenvalues, and for complex eigenvaluss
it is exactly similar.

Consider a group of vectors (a suwmation) of d associated with

53 Sorresponiing o tae 2ijenvalue 1., i.e.,

l\s T
DI [ X, (¢)dt (2.5-14)
s 0

.

wizre tn2 & (t) belong to 5, (in Solumn fora it is Jeadtad By §; ).

Densting  the s2t of T, hy T, (mxa, matrix) and siistituting for

Y ¢ M~

SJ froa (2.5-11) this equation baconas

A;

; T
Zci IL;(&)lt s Zc;} S;Td\‘ s[C‘ e, - ¢ ‘] Je‘ )Jty-_rsudt
N1 ’ el 3 . J
-
= C,, yfe [ e"‘tu dt
9
(2.6-15)

Since tha necessory and sufficient condition is relatad to th2 rank of
T . e . "
the matrix B Y, (see th2orem 2.3) this is to be modified by sinjular

value deconposition tachnique. Dotails of this tachnigu> zon be  found

@

2
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in many texts on Linear Algebra, e.g., reference (4], and here we

will just use the results for our purpose. By this technique the matrix

T
Y:’B can be written as

.
Y;8 = LW 2

(2.6-15)
in which Lj ¢ 2; are ortiwjonal mnatrices of order My m,
respectively, and W, isa M x m matrix of the fora
!
Lo 9 (2.6-17)

Ta2 As is a diajonal matrix consistiny of as wmany ndnzers valuss
called sinjular valu2s as th2 rank of W; . Substituting (2.5-15) in

{(2,.0~-15) w2 have

T (-t Tt
C/','Y.BJQ ’ud\‘=C,.‘.L,’j¢ ’w".ijudt
°

a

A T .
- c -;'*
= | &N g udt
[}
{(2.5-18)
A
whcre C/_j -Cﬁ‘ Ls Wwiich is a set of /4; L.I. wvestors. Now, let

A o2k
;= e W 2w (2.6-19)

denote the M. elements &.‘m. i21,2,..., M, . With this (2.5-18) can

be written as




! T (2.6-20)

This formn is ready for replacement in the d equation, i.e., replace

A

A .
C/“J, by Ca; and o (t) by o(t). If A is of order f,j

indicates the rank of W, is L) then >xpanding W, 2, we will get

(which

A LI A
S:i:[q"ﬂl‘---.,“lj, 0,9, OJ (2.5-21)
v‘v—__——__— L P
L M= 4

This has M;- f.; zeroes for the :(;(t) cefficients. But Qj beinj
the rank of YTB if it is less than M; the systam is anTdoatrollable.
In other words, if thers is a z2ro elenent presant in §J- th=n ta2
systoem  is uacontrollable. On tn2 other hand, if fJ. is 233l to M,
Y;Td is of full rank wiich satisfies the sufficient condition for
complete controllanilisy as far as this eigenvalue 3,- is conzzrnad.
H2ace, tha coefficizals ;_!r.; are independent. Thus, only a zero
indicates depenlency of &;(t). This orocess is reop-ated for all
distinct real eijanvalues ‘),- .

For complex eijenvalues the sane procedure is adopted. Th2

equivalent of (2.6-15) is
-
T 5t
1, / e [ u‘] at (2.5-22)

T
where €, = [e, ¢, - &), an nx2p; matrix. Ajain Y  is deconposed

similar to (2.6-16) (mote Y_.’ is a nx2/oJ. matzix), i.2.,

T 1 -
1 - [kTY;*B )',-TB_JI = L, W; g (2.6-23)
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Hance, (2.6-22) becomes

0 (2 =23%)

A
where Cz,u,.' a._‘_A_L:, . aset of 2m; L.I. vectors, and

4 "
S, = € w:‘ E‘- nr ~
; Lu . (2.5-25)

denotes tn2 2M; elenents %.(t), i=1,2,....,2M;. T2 form in (2.6-24)
is cready for raplacencat in th2 § 2quation as Jdiscussol earlisr, Now,
suppose W, is of rank !.J- than rank f_' =L, . Md if £J~ < 2M; thzn
. . A LAY

there will be 2,44J.- ﬁj zaro2s df & (%) in Sy . T2 systen, of cours:,
is awcontrolladle (rank f}- <2M;). On t2 othar nand, if ,(3 = 2M;
the syt is completaly controllavle (rank '{J = 2M; ) es far

A
eigenvalue )‘. is cencernad. Hence, all 2/4; coefficients & (t) are

indepepdoent, Thus, anly the peesance of zaroas indizates depealonty of

[ Y N . . . .
{t). This process is rep2ated for all dJdistinct complex eigenvalues
L 4

[

A

In th2 above a madification is describad to he adoplet in tha
spatial forn of 4 for the columns in C and ti2 eleacnts in &(t) in tha
casz of more than onz Jordan blocks assoysiated with on2 eijenvaloe,

. I3 - s . L
This involves replaciny a set of c; in C by anotiier L.I. s2t <, ani
A

a corresponding replacencnt of o (t) in &(t) by O(J.(t) which corresmond

to the foundation elenents associated wi %1 an eigeavalur. We showed
9

A
that the systen is uncontrollable if and only if an elanent °‘f t)

o - . c— ot 4 =
B e e e PERALS Be s i o .



goes to zero. Combininj this with theorem 2.5 and following the same
line of proof we conclude that the approximate degree of controllability

P‘ joes to zero if and only if tha system is uncontrollable. This can
be summarized in the following theorenm.

Theoran 2.7: For a linear time invariant systen (2.5-19) the
approximate degree of controllability (" based on the parallelopiped
region R” joes to zeio if and only if the system is uncontrollable.

If thsre are more than one Jordan Dblocks associated with an
aeigenvalue apply modification based on sinjular value decomposition as
described above to the sets of colunns of C and foundation elaments of
o/(t) associated with sets of Jordan blocks corresponding to any distinct

eigenvalue. Th2 rest of the proof is as jiven in thesrem 2.4,

W e e



2.7 Summnary

In this chapt2r attention was directed t> 7jencral lin2ar time
invariant syst2ns, w2 started wita thoe question of how effactive is a
distribution of actuatars 2n a vary larj2 flexihle snitesraft in
contralliny its attitule and shape? To <comprehan? the meaning of
"effactive" w: soujht to davelon 11 concept of tha  d2jrez  of
contrallability. This Jdeszelogiant followed a ratiosnal aoodroaach first by
showing the unsuitability of certain candidates to serve as a Jefinition
for the dejree of contrsllability, and then resulting in 2 meaninjful
d2finition wWiizh would account for all tw pertinsat factors sush as
oontrollab.lity, total time, <ontral effort, stability, an? =antrol
objestive thist will have a bearinjy on tho dejrre of <ontrollability.
e a definitison was  forawulated suitahle aporaxinatians "2l to 2
dozelamed for th2 recovery rejion ant th2 dagrex of contrallability s»

nat rais definition is easily applicable to real problens antd
nunzrically manaj=abla, i approxi cions approaching th2 true valuzs
as e computational effort is increasad. The mathenatical appraach
adoptad, besiies leadint us o our dasirel 3921, shhwed the systam
2quitions  in sp2tial fara theredy <¢nabling us to Jdarive some relatively
sinnle tosts for comnlete controllability o€ the systan,

Mus, in short, the enphasis in this chaptar has Yeen development
of a ratisnal concept td ohtain 3 meaniniful definitiosn for th2? dajrec
of controllability anl takiny it t> the staje of usz2fuln2ss fron an

appl ications int of view,
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3. AVALYSIS JF TARGI FLIXTIILT SPATECRAFT

3.1 Introduccion

laving develope:d the necassary ~<oncepts £or the  d23ree of
contrallability of 1 system w2 are in 3 pasition t7 annly thes? tH our
funjamental problem, the study of the eifect of location of actuators an
very larje flexible spacecraft. To Jo this first we have %5 ohtain the
state sprce forn (2.2-2) for the systen dynaaics 2guations »f dtisn Or
the spacesraft.,  The fllowiny ars tha 2ssentinl sez2335 involv2? in
ohtaininy the stat: space fopn.
l. Choosiny 2 janeral molal far a tysical vary larje floxible
spasecroft.
2. Derivation of eguations of wotiosn and th2ir lin2arization ahout
th2 eguilibriun szata,
3. Translatin) the jeneralized forces into th? narmalizedl effort
u, and introducing weighting factors for th2 =sordinatas ¢
abtain normalized stats variables,
In this chaptar we will be conzernad with the ans. ysis oF 31 joneral
model for a larj2 flexible spacecraft and obtaininy tha stat2 smara forn

for the Jdynanic 2gquations dascribing th2 systona,
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3.2 Typical Planar Ywtisn #bdel of a VWery Larje Flexible Spacecraft

The tyaical planar model consists of essantially a rigid body 3& ,
and a flexible body Bg with the rizid body as a rantral core
separating the flexible body, Thus, the flexible Loldy consists o€ twn
very larje appendajes attached to the rigid body one on 2ither side 2s
shown in Fig. 4. T2 systan is consideradi inortially =t rest, i.2.,

cny disturbanze &3 the systan rosults in sone deformztion of Be ani

somz motion of BR such that the center of mass of the system remains
stationary in inertial space., Th2 system will be treat?! as a continuunm
anw the aybrid coordinate approazih (5] will be us2d. Ths flexinle hHody
8

- will be treatad as 2lastic bDeains and the Jeforamtion in the nlane »f

rotation will b2 assuna? normal to their undeforned axis.

, e, 'inm. PH\'U‘& 1\3
ELAN SRR IALITY

19

TECW



g

A
F A e ™™

3.3 Dynanmics

The foil

My eily i3

owing rotations refer to the model shown in Fig. 4 .
Center of mass of the system stationary in inertial space.
Point fixed in Bg with which O coincides when there is no
deformation of the flexible body B8_ .

»

Frame of cartesian body axes

L)

> 5‘ /b, whose origin is at
C. Th2 plane of motion is ‘Bl-fat , the axis of the
undeformed flexible appendages is parallel to g\ , and
their defonmation is in B,_ direction.

Masses of the rigid body (B,), the flexible body (B.), and
the system (B +3.), respectively.

Differentiul mass element in the system.

Position vector of a mnass =2lement in the system in the
inertial frame (i.e., from Q)

Vvector drawn from the center of mass O to the point C.
Position vector of any mass elenent in the system with
respect to C.

Vector from C normal to the undeformed axis of B, .

Vector in 5‘ direction denoting the offset of the flexible
componant from the base of r, .

A

b

, component of r’ for mass elements of B, .

Displacement of mass eleanents of BF r.lative to its
undeformed axis.

Inertiai attitude of B. (and rotation of body frame B).
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I"_gl_(*): Time derivative of (*) with respect to the ir:rtial frame,

'g]_(*): } Tim2 derivative of (*) with respect to the bedy frame B.
dt

From these we have the following relations:

4

/
Ra Rety ; "'y.s).=vv\’!-0-vvﬂF ; Y 1,\*11-_3_(:,1:) Jov 8

Now, let (3.3~1)
p - A A
@'®5 5 2(!,t)-3(v,e) 'a.~ ; I" .,"!,'_'.Y; b,
A ]
Tn = Yn y, ; Y= b, (3‘3-1)
so that

A
A A

.Y.." Y ;‘-Q-Y c‘*‘j LZ. = )}+(Y“*9) L‘_ -fo-r B‘ (3.3-3)

From these three eguations, we can write

! /
Y"e '\’" for By Y, = )Y, for By
Y  favr B¢ ’ Y, + 3 fer 8¢
. [« P -
B.(l’ e U Pﬂ' ’. QHJ sc } *z - o. {OY BR
Y fer & (5-3-4)

The exprassion for R, can be obtained by considerinj the center of mass

of the system with respect to the body frame 3 as follows:

—Mng =f'£,dn\ x rZ'AM. -+ J’!'Jn
sy‘f‘ﬂ e. B;
;f?’.lm + j(Y,\-t- Y)dm + [ 3(x &)dm
- - /

D T VL ERT M o

¢t



where (3.3-1) has been used for o’ for B. . But when there is no

deformation of BosRe™ 0 (see definition of C), i.e.,

/z'alm + /("f“#x)dm = O (3-3“)

Usinj this in (3.3-5) we obtain

Re « — —L- {mﬁdm ={-J_ [%ne)*m] B (3.3°7)
K - =
(A 8¢

where y has oeen substituted from (3.3-2). Let

A

RC - -—-—L fa(",b)ﬁ‘m ) Y] *‘\&b RQ L] RC. Ll (3‘3-8)
M -
S5
8,
Hence, from (3.3-1),(3.3-2)

A A ; A , A _
R _R_C-Q-I', R‘ 5‘.*..'." b'.’.fz’ L‘ - -r‘ L'-..(Rc.‘.-rz) Lz (3-3 ‘\)

TR %R e @x R =t b (Rt b,
r @b x[~/ 0 )]

L3 . a ,
o) = -0 (R(-rvz')b“, -~ \.,;'-r"“)'@*r,)la
where r‘ = Q] from (3.3-4). Hence,

(3-3-10)

2
Inz TIn, £} ! : D2 A
5- “_e -éz[_ﬂ:*\\'l') (*z') ‘PQR:'HJ." Re +(e"‘,/

+4(3é=)(8+{)+2®T"(31-1/)+2® *ll<°éc\) (3.3-n)
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3.3.1 Kinetic Bnergy

The Kkinetic energy, Ty , of the system is

T . Jf’-_é_.’"g_ dm
s,!bu\

(3-3-12)

wiich on sudstitution of (3.3-11) yields

12 ‘82 \* :
T 48R fAn ¢ 3 (8D A 118 fer)un 4
Sysbem ' System 5Y5 tamn

[ ] + @'k [/ + @ [ (544

Sysbava ’Ylhu\. Systew.
= ,B: ‘d I3 X (ﬂ /)alm. -l»-'- (a.,)dm.
(3-3-13)

Since r" ' rt' are different for B& and B (see (3.3-4)) the .ntejrals

over +the system that contain these have to be separated into the

integrals over BR 31d B'= . Hence, sub

(3.3-4) these intejrals can be written as:

I
stituting for r R etc, from

D [ /) dm e (1)l /vot.u... s [ ¥rdm em v e 2 (gdn
9

Syiram Sycee F N ]
i 8 € e
- (314'\.
. / , 8¢
('ﬂ) (71 J“‘\ = ! fi Jﬁ\- -+ mgv'\ + f " dwe
’yshm. 8,
(i / * dv-u:.-/vyolm ; (\'v)fv"Jm. -.-[7,’.)»\..../(14.\
n:h-. ‘o Systene 5q 5
(V) f 'Y.zld"\ - 94“ (V') !\ev ) A“ =/SLJW\
Sytlew (Y 375 tam 8,
(3.3-14)

“here m fdn , and (r’) = (r) + (r ) has been supbstituted for B
8
]
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Define the following system constants:

T
Tz | Catdm o J( vidm o+ e Yy
S

/
G = f"’zd"" + Mg

Be
cSz - ]-y;,d\n. + !-rdm - f\"’c(m (3. '3~¥'5)
BR BF 373?‘»\

in which I represents the systen moment of inertis about point C vtien

there is no aeformnation of F’F {y =90). 3Subst'tuting (3.3~i4) in

(3.3-13) and uwsing (3.3-15) we abtain

. T ) 2 i ‘o u]
=& E‘:’.‘Is *imsgc*‘"’nfa""‘“ +Cg5 Re % 3 Je‘d d“‘-*‘“c{“’ "
£ ¢

ég
* Q[Cst-Q’éc ) ¥ J Téd”" *% MS (B.RQ)L"' eéc fﬁfém
B¢
+ '2"‘ ‘( 52dm
2¢

(3.3-—!6)

where ms = {dm .
Systawm

At this point modal analysis will be adoptad for the appendajes.

Define
j(Y,L—) = %(*)"‘(f’)
@ = [?’.("’, AV NERER ¢N(~)]

T \
() = [q'(t), GE, - '1..(‘”] (3.3-17)

shere ¢ ‘ 'l /3%1,2,...,N, are scalars, which are fuictions of space
J J

and time, respectively. With tnis definition we have
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5,4.. = [!§(v)dn] e ; J yldm « QT«;[[@E:Q(M-.J h (&)
S¢ B¢ [ %

1‘5"‘ = [!?(*)J-\] '.l(t) 5 /5147'\. - i?t)[£‘§;)§(v)dn i(t)
8¢ &

Be

j*f’d" = [{Y§(v)dm] 'i(f) (3.3-v3)
., a
and usinj (3.3-3)

Rem ol (9dm o [f@(v)c\m:}'l“’)
b

’0 .
R, = - [!‘Q(v)dn\]']_(*’) (3-3-19)

Also, define
As = [ Mo, /‘n,-----,/u,,]-[éu)dm
'3

-
8 « [St)Ferdm
L

I‘*:, = [/1"' , /q"‘ e ..’/1.'*‘]. /‘v§(~)¢l-
8 (3-3-20)

Substituting (3.3-18) and (3.3-19) in (3.3-15) and using (3.3-20), the

expression for the kinatic energy of the system becomes

T0 (4T o MMrwcupgn) +64 + 4 (i

(3.3-30)
where

("
!
/\/
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M= A""-;k—/‘QﬁQT
S

M "/“vf“-c;;:"‘/q¢
s

Csy = Tn — ;’ (3.3-22)

3.3.2 Potential Enerjy

Since the system is inertially at rest the potantial energy in the

systen is solely due to the elastic deformation of tha flexible body

Be . Let Vg be the potential energy in the system, and for elastic

beans we can write

2 2
V. =4 [ua:) (1_3(*»*)) dy (3.3-23)
a
4

? vt
- d L(s:) { %t Lc}?m'lm] }zd-r
3 ( (ex) fw [_@1;@"@;]*1 (£) dr
LS
7§ [em (&7 ]

4 'irk 1 (3.3-24)

where y is substituted from (3.3-17), Q” denotes .ne secord

derivative of & witn respect to r, (EI) is the stiffness of the body

BF' and

k= j (eT) [q:"’cp" dv (3.3-15)
B¢
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3.3.3 Generalizad Forces

To derive the generalizad forces we will assume that external
forces and couples act at discrete locations throujhout the system.
While forces will be assunal to act at points couples will be assuncd to
act on infinitesinal elaments so that thase can have rotation. Let
t"é: Jenote the inertial velocity of a point at jth location in the
system whére a force F; is applied, and let 2; denote the inertial
angjular velocity of an infinitesimal element at jth location in the
system where a pure couple 7} is applied. If Qy denotes the

generalized force corresponding to the jeneralized coordinate q(t), then

Iy

- é.
'Zfs'-?-%'-‘ + 7. O -
? PO .gf‘ 3 (3.3-2¢)

whera F stands for a class of forces and L for a class of pure
couples. The coordinates y(t) are @ and 'l in our case. From
(3.3-10), we can write

r" A 4 ‘ Q. . / . . -
Ri=z-@® (Rt ) b +(°Re s ;;"‘9".:) by (3:3-27)

in which we note that as the location j varies r/, r, and their

derivatives are the only quantities that are affected. The inertial

anjular velocity £; can be written as
A
L;=(@ b fovr By
A
(& +,‘%°¢;) by fov 8 (3.3-2¢)

where NJ is the slope at jth location on B, relative to the undeformed

axis of B'= . We have

¥



Canox; = .-5%’“:*)’ = f'(-r;)')_(.e) (3.3-29)

‘Vt‘r‘-

/
where ® (r;) denotes the first derivative of & with respect to r at

r=r;, . For small deformations tano(.., - -(3 . and hence

_a..°<- » 3_(1"**,-\ = §'(f.;) "l&) (3.3-30)
R 15

which jives

o A

R;:|@ b F B
A
[® +3r)W] b e B (3-3-31)
Now, from (3.3-19) and (3.3-20)
- .. T .
Re=—-Mell 5 Rem = o /el (3-3-32)

and froa (3.3-4) and (3.3-17)

“'.g = ‘Ylli -~ 8q ‘Yz’;= 7115 o Bg
i deose T 1CAL TN
'41/5 =(0 4or 8,
B A 8 (3-3-33)

With these equations, from (3.3-27) and (3.3-31), for q=@ and q ol I

we can write

JQO. A / A

% = —(Rc"'"z,.i)"! +7; b,

? . .
TP N

A A
(LEMm -] =Tl b Vi h 8
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% 3 ’ 31 Ay T e
)y O (53-34)
A L)
Let E;, = L; " e Y b,

The forces and the couples are applied in the plane of motion. The

equation for the generalized forces in (3.3-25) then Becomes

N v/, ™ By
% * ZiL‘i(-é'\-sAH ,,,)-f"/ﬁ “} +J€I£, $ov

jeF
, ‘I"_ v - Y‘.'(" +z 7:; 4" B‘
E;{{ LJ{.[-}.\;N (¢ ‘)]'l ’f,‘} + JEG (3.3‘3")
ANPA LD T

* v
Y imrBe]Y; thE o
e M YA
i€? (3.3-37)
We see that QO has temms containing ] and we desire the generalized
forces to be independent of the cosrdinates. Th2 nature of the problem

is such that the deformation is only in g‘_ direction, and hence it s

reasonable to assune applied forces to be in ‘t‘:‘ direction only.



Therefore, w2 will set L;= 0 so that

Fietit (3.3-31)

With this the final expression for the jeneralized forces are:

- '7|; * T;
%2 Y sg:c

i«?
;T

q,l » Z[Q‘EYJ)J&.’-—,‘;’/\Q] VEDIE XA

ie3 i€l (3.3-3%)
where
7\,5“' T|,J 'ﬁ' Bl ‘F' a 0 -‘, 3 o™ Bl
N L)

Y;' .ﬁ, 3‘ , 1 -&v J m B;

(3.3~490)

3.3.4 :Zquations of Mtion
We have derived the kinetic energy T, , the potential energy V,
and the generalized forces Q’ . Ignoring the dampiny (this is

reasonable for spacecraft), the Euler-Lagrangian equations can be

written as
L
G b SN RN @-3-4)

and L = Ty = Vg « From (3.3-21) and (3.3-74) the Lagranjian
2 T T NI
LaTye vy e @ (AT +LqMrecymn) +BA1
WU hg
+3iM=F Nk (3.3-42)

from which the aquations of motion for the spacecraft are:



LRI AN

| R

Tl

@ (s +?-f-,./':‘l+17"1)+z®(°:sﬂ;"t +{Mn)+p i = Qg
M'.l'."'“'l’*’/*@" ét(”‘l""cn /“?) - Q'\. (3-3-43)

where M, K are symmetric and 39, .’)1 are as jiven in (3.3-39),

3.3.5 Lineaarized Ejuations of motion

In deriving the final form for the jeneralized forces we already
made the assunption that tha deformations are very small., 'We will
consider arbitrarily small deformations in the appendages so that
nonlinear terms in the coordinates ’[J- of 1. can be effectively ignored.
Also, if the ~2formarions are small the perturbations in th2 attitude &
ar2 also small. Hence, nonlinear terms in the attitude perturbations as
well as terms involving products of deformation coordinates and attitude
perturbetions can be n2jlected. Further, since our cancern is mainly in
returning the system from a Jdisturbed stat2 to its noninal (equilibrium)
state we <can, without any loss of jenerality, assune the nominal state
to be at rest, and will consider attitude perturbations adout a mean
valuz, Therefore, let @'@*’ : és @ .o (3.‘_44)
whare @ is the mean value of the attitude and 6 its perturbation abou-
this mean. From this

. 2‘ o 2

=0 . =6 ; €& = 6 (3-3-4s)

)

Substituting these in (3.3-43) and neglectiny monlinear terms in the
coordinates we jet the following linearized N+l equitions of motion for

the system:

© e




Isé‘l-/‘:r'.i, = Q
M+ kQ+p® = Q@ (3.3-4¢)

Or, in matrix form

T o O o 6
L # s +]- = Q. (3.3-4-7)

M M 1 K 1’ Q".

10

where 0 is an Nx1 zero vector and OT is the transnose of @.

If we define the following matrices

’-0 o' ~ 1R 6

-+
ﬁ' Iy M ~T<" . Q= . 7!.: (3.3-43)
2 J J
then the equations of motion in (3.3-47) can be expressed as
~R A~ A ~ .3-49
MR+ kN =R (3-3-49)
or
~ o) \ me o~ -
vt-q-(ﬁ‘l()q* M ] (3-3-30)

which describe tae systen in the hybrid coordinates 8, 1- e could now
procead to put these equations in state space form. But, since these
equations have some special property we will investigate an alternative
form for these equations. Note tnat the matrices M, K are real
symetric and W is positive definite (associated with kinastic enarjy).
Such a pair of matrices can bde diagonalized simultaneosusly by a
principal matrix. Often it is desirable to work in these normal

coordinates so we will derive the system equations in orthogonal form.
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Let V= [V, ¥ ¥ .....V, ] be the principal matrix whose columns

T& , i=0,1,2,....,N, are »f Aimension N+l such that
; JTRVG = A (3-3-5‘)

T o~ O E

vV MV=
where E is th2 unit matrix of order N+l and A is a resl diagonal matrix
of order N+l, Details of such transfornation zan be found in texts on
matrix theary, e.g. , [A]. Hence, 2 new set of coordinates
'§r= [§ %, §,---- §, ] can Je obtainad by the transformatisn

CRY (3.3-52)
Substituting this in (3.3-49) and premultiplying by V'@ and using

(3.3-51) we have for tne systen eguations

‘i‘ ?-Ai, GQTQ

‘M2 Soordinates g in this zas2 are often referred to as vehizle normal

(3.3-53)

moies,

The advantace of (3.3-53) over (3.3-50) from the alesbraic
noines nf view is annarent. Before we discuss state snace form
for the system equations we will translate the generalized

forces 5 into normalized control effort.

3.3.5 Normelized Control Effort

In Shapter two it was pointed sut that th2 control effort nust he
normalizad, The control effort is imbedded in the Jeneralized forces 3
we derived in (3.3-33). The jeneralized forces are due to tha control
actuators. e will consider two types of actuators: 1) Force type, and
2) Torque type. The output of these actuators will be forses and pure
couples, raspactively. Any real actuator has a maximum output vossible

which we will term "actuator strenjen®, and it is this maxiagn which
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will be used to normalize the generalized forces. Refarring to
(3.3-39), let

\/‘i ™ i max ‘4,- (t)
(3.3-5%)
where Y. ' 7; are th2 strength of the force actuitor and the
AR

torgque actuator,respectively, and j is any location for thess actuators.
The normalizad control effort is u,(t). Nota that u;(t) is 2ifferent
for each type of actuator (i.e., j belongs to different sets ¥ , § ).
Substituting (3.3-54) in (3.3-39)

/
- YL u(E) + 7 u.(¢)
Qe T VimaTi % 2 Timae

Tv )4, — U, () (3-3-55)
Q.‘ & %[? ("J)JFJ ':;N] X,..:\ J
¥ 3;? é’ (YJ)JFJ Emou' (¢)

where J,,- is zero for locations on By and wity for locations on Be -

Define the followinjy matrices:

/ '
He “Q ) H.I[Y‘M::.,Y““‘:.;,.....y"‘:'; ;‘T'm,'nmz'“]
My
i . ~ .e
UL PELE IR LN e
Hl\-[“"l“u\""“b\:f""\ “M\""'"s\]
s-c"""l.&.\‘.e’} J {&51},5*5
T is PP SR 1
Ty = Yimae [FTO0 G = Mad im0t 3
T .
a.lv\ = 7.;'m & () ey , oy S e

R




1‘.*'

.e

ws= |g ] u:-[_u\ Ha---H,]}{u;},ie}
e “:’[“s“-""“‘ﬂ){“.s};"‘f

(3.2 56)

A
, H are M¢<1 oolumns, With

In this case H i

~
i W > 3
e 1S A row vector anj .13‘

th2s2 notations (3.3-55) can =2 written as:
Q. - HO w

Ql- H.lu (3_3-51)

and from (3.3-43)

6 = "W (3.3‘38)
The jeneralize” forces are now in the forn of normalized zontrol effort
u. Sinc2 w have tha total number of controllers 2qual to 2, £+ s=n
in the above eguations. The matrices ‘g , H,\ are of dJdimensions lym and
Nxm, respecstively, so that H i3 of dimension (V+l)xn. And u is of

dimension nxl.

3.3.7 Normalized State Space Form for System Ejuations

We will consider the state spaze form for the equations of motion
(3.3-5") and (3.3-53) in th2 two systems of :oardinatesi ani ?,
respactively.

1) '{ sytem of coordinates

Defining



X‘T' [‘ é 'l\ J‘, '\1. ;‘;' st ot 1» '.lvo] (3-3'5‘)
the equation
' ~ ~ ~-‘~ ~“
N+(RT'k)N =M @ = M Hu
Zan o2 put in tie fora
(3.3-60)

x*e A®x’+ B%U

where A* is an augmented matrix whose elements are elements of Ll

and zeroes and unity at appropriate slots, 8* is an augmented matrix

Whos2 alements ace alements of M™'H and  zerses, sush that  (3.3-37)

repr2sents the system aquitions (3.3-50) and identity relatiosas for all
the 2lements of "i' .

2) § systen of coordinates

Dafin2

K.T’ [go éo S\ é| it it.-. o gn énj (3'3-“)

Then tho equation

. P P ~T
FeAgVREVHE
can oe put in the forn
*a s a L (33‘“1)
x*aAx"+0 WU

where A, 8" are augmented matrices, similar to (1) above, with
~T
elements of /A and V 4, respectively, such that this equation represents

the systen o2quations (3.3-53) and identity relations for all the
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elements of §

To obtain the final state space form corrasponiing to eithzr of the
two systems of coordinates, TL » § . normalization of th2 state variables
x* must be effested. This is don2 by assigniny weighting factors to
these variables so as tz reflect the relative importance we attath in
controllinmg them. Let N, , 'ﬁ; , i=0,1,2....N, b2 a3 set of chosen

w2ightisg factors so that

a [ )
x g .,'— .
z"' _.‘.:_’-L J x: - JJL ) ‘golilt'...'ﬁ
¢ 42
N; . H;‘

(4.2-63)

a . :
whare X; 0 %5 j=1,2,....29+2, are 2lenents of x*, x, respactively.

For the 71 systen

. l Y -
x'leo xy =8 liﬂ"li 5 Ran” (8 )
.3- 64
e a, N (3.3-¢
and for thz ¢ system
x5 -i X, -é ‘20, 1,2,.--,N (3'3-65)
wUn T T L J 0T ‘
From (3.3-53) we can write
X‘-DN& (3'3"‘)
where e -

Dyediog[n, T Ny B - oo Ny B (33-07)
Substizuzing for x % from (3.3-63) in (3.3-30) or (3.3-52) and
premultiplying by D;' we obtain th2 final state space form

X = Ax+0u (3'3-"9)

where
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A=pola’p, , e=prg" (3.3-¢9)

Thus, the auations of motion in eithar of th2 two systems of
coordinates 7( » § can be put in the normalized state spac2 form
(3.3-53). It should, however, be noted that the factors N, , N. are
not the same for both the systems ~‘[ and € . The coordinates q are
physically mors meaninjful than § which are abstrast (2 combination of
hyorid ssorlinates 8, 1) and difficult to interpret in physical terms.
As such it is easier io assign the weignting factors N, , N; for the q
systen tan for the g systam. Nevertheless, it may be possible to
translat2 a set N, , N in '{ system to an aguivalent set dp, N; in

g systen usiny soma understanding of the systam behavisr, etc..
Howaver, in th2 oresent analysis we will assuae that it is pessihle o
obtain a ser N, , N; in 2ither syscem of coordinstas. Also, note that
any one of the N, <can be set equal to wnity since the weijhting fsctors
reflect only the relative importance amonj the coordinates.

gdefor2 2nding discussion sn 23uations of motion we will derive

expressions for the mode shape integr.is basad on this model.

3.3.3 +ode Shape Inta3rals
‘*‘ ki;‘

n‘e mde Sham inte;rals ﬂ“. 'ﬂv". ’ A.’i r A i'l,z,....,“’
j®*1,2,..0,N in (3.3-20) and (3.3-25) need t> be avaluated to odbtain the
constants of the 2yguations of motion. These intejrals ar2 taken over
the flexible body BF which is considered as cne body, and hence any
mode applies to the antire body. B8ecause B is split abdout a rigid

body these intagrals are avaluated as axplained in thz followinj.

-4y
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A mode shape is chosen separately for each appendaje whose fixed
base is the rigid body, ani these two mode shapes for both the
appendages tojether descride a mode shape for the flexible body Bg.
Thus, there is a discontinuity in a mode shapz of By due to the rigid

body. Let $; (r) denote a mode shape of the flexible body 3., and

define
dweldm | —(ew) sy s

A < *
¢j(t) .,:‘y‘ Levg

(3.3-79)
d a A
walre ¢J(x) applies to> the appeniaje in -b, dirsction (lefr) an! ¢;(x\

[
agplies to the appendaje in +b, direction (right); r is as definad
3
before and x is measured from th2 rijid body base 3lonjy b, direction;

+ -
£, 1 are tne lonjths of the appandajes (from th2 rigid body base) on
A

the positive (right) ard nejative (left) sides of thz b

r: « [, are the offsets of thase appendages about th2 bzse of [

A A
*o .- b' directions, raspoctively.

Jdirection, and
" in
The mode shapa intejrals from (3.3-20) and (3.3-25) can now be

axpressel as:

) /“4. . [ ¢j(f)d'ﬂ z f&: (x) dwm + /4:-(&) dm
3 °‘ B; e; ‘
s (i) Mg, ® /«rﬁ.md. - / ?¢J(R)Jm +/:r *‘i(x\‘n
ok (N (& o
(i) A = /¢-(V)¢.(v)‘m - / {u){.u)ln +f¢¢(n)¢‘~m4--
By ‘ ’ [ o

11




Ki; = /(51) 4’ (v)¢ “tyrdv

j@:) [d ¢ (,)][4 ¢w dv
L3 +J (&1) [ ¢("‘)J[J f(x)] dv

c.ul,\. e 7 .:| t, *N
are used to denote the left and ngh* apoendages of B

(3.3-71)

where BF R Bp

respectively, and (SI), (EI) are usad similarly. Let

dm -{c; (v)dv f~ 8

¢tndy 4 8
(3.3-72)

Yy

denote a Jdifferential nass, woare c (), o

r) are linzar mass

densities for B; ' B; , respactively. Not2 that r can be expresseld in

4

terms of x for B; , B. as fallows:

F
vz {x- Ye , ..(1'-”;)5-75—*{
""'*¢+ ) 'Yg* ST % l*-\-'f:
(3.3-73)
fron #ich
2 = ‘T'ﬁ'*g- ) -‘-S‘l L0 > B;
r 4
(v-v , osxsi 8
(3.3-74)
With these we can write
--y; °
j(F)d-» - j (47) ¢ (dy =/ (47) g rdx
8 (%) -t
R l'-ovc
J (§")dw « J (4¢%) ¢ tendy -j (f ) ¢ (nda (3.3-75)
o v

{00
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where f-, f% are any functions <correspondiny to Bg / B: .
respectively. The integration of the mode shapes can be put in a

nondimensionalized form as follows,

Define
N N S e A
Ml SRS Co) SR W

Brree, priv) = & ExD Aroep
€ $J.(") for &
Yo = (v)'L A e

. (3.3-7%)
1: = (‘Y:)’l 4’ B:

o~ A
whars €, is some constant haviny 2 dimension of lenjth and ¢:' , f‘.‘
are nondimansional functioas. These leald to, from (3.3-73), (3.3*7))

and (3.3-72),
RS LSOO NE L I IR P SOT AT L8
LA (ve) b o8p ’ ST drt N
$ e € P COR -1gx"<o
é; () 2 € (") | oex &)

v~ 2 - e; d° %)
ad O = x=t J
TR AR To e

(3.3=77)

for
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In nondimensional form (3.3-75) can be written as:

/(f-)d"‘ = r( ) e (idx = ]o(f-')c;(v) " dx*
& N A

+ |
*+ -, T - C ")l X
[ ($)dm - f (IMOLLEE j (76 C
*
° 0
(3.3-79)
Jsing (3.3-79), (3.3-77), (3.3-73) and sudstituting for £, £t
appropriately in (3.3-71) we obtain the following expressions for the

mode shape integrals.
|

O Py, = [ e; &5 dxt + /c,-*ci‘;.‘cx-ux'

-} 0
o

o
(i) /ﬂyg = /C: l-x‘ %&(xo)dx' — /C:f (v)

$,- x)dx*

!

' A n .
+ /cf fx'%'(x‘)dx' + fcf L7(v) ¢ (x*)dx

0 0
° 1
i) A“ = / C; €¢ %"%'dx' + /C;‘ec ﬂ‘%.dx.
v) Ki; = j‘ €3) & & g"’éx‘) %'ﬂ(x")dx'
W) Ky —m;— ] f
-1
' * /" % (3.3-79)
ET) €. & 4 o A - a
+ / %r¢:(x)¢J‘(X )dx
0
!'.E‘)l,%,..-)u.'jsl,‘L,l'..-.’N
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whare
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J YR A
ALY » e
y L * —_— ¢ (x*) (3.3-80)
$J.‘ c :xi ¢J J ¢J * Ax‘ ’

The expressions (3.3-79) will be used to evaluate the mode shape
integr2ls for any chosen mode shapes. In the next chapter we will study
a spacific model of a larje flexible spacacraft and obtain numerical

results.

jo3
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3.4 Summary

In this chapter we analyzed the dynamics of a tyoical mode] of a
very large flexible spacecraft inertially at rest, and obtained
equations of motion, linearized these equations about an equilibrium
state and put them in state space form to be studied from the
controllability point of view. The eguations were derived for planar
motion, and the flexible body was assumed to be elastic beams undergoing
transverse dJdeformation. Linearization was based on the assumption that

the flexible body underjoes small deformations.
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4. APPLICATIONS I'O A SPECIFIC MODEL Of A LARGE FLEXIBLE SPACECRAFT

In the last chapter a jeneral model of a large flexible spacecraft
was analyzed and equations of motion were derived. In this chapter we
will choose a specific model in order to obtain numerical results and
apply the cncepts of the degree of controllability developed in chapter

Two to study the effect of actuator locations on the controllability of
the system,

v
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4.1 Model Description

Figure = shows & specific model of a large flexible spacecraft. It
consists of a cylindrical rigid body and two identical appendages, i.e.,
the lenjth, linear mass density and stiffness of both the appendages are
identical, the latter two properties beinj uniform throughout the length
of these appendages. The offsets of these appendages about the B.‘_ axis
(in the rigid body) are equal. Each appendage is treated indiviiually
as a cantilever bean with its root in the rijid body as the fixed end.

Any cantilever mode considered for the two appandajes t3aken tojether

constitutes a single mode for the entire flexible hody BF' For
any cantilever mode of an annenia~e two tynes of modes for the

flexible body 8¢ will be considered:

1) Symmetric mode == i1 which a cantilever mode of an appendaje is
imposed symmnetrically about the rigid body for the two
appendages, i.e., the appendages execute a symmetric mode of
motion as in Fig. 6.

2) Antisymmetric mode -- in which a cantilever mode of an
appendaje is imposed antisymmetrically about the rigid body for
the two apperdajes, i.e., the appendages execute an
antisymmetric mode of motion as shown in Fig. 7. In this
analysis we will treat separately the symnetric and

antisymmetric nodes of motion of the flexible body Be .

ok
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4.2 Degree of Controllability
4.2,1 ™ode shape Intejrals

For the model described above, we can write, in the notations of
section 3.3.8,
- - - . .

L£=210%4 5 Te® *e+" Ye ; (Ye) =(ve') = v*

Crl(rlac  (v) wC, x Conchant ; (BE) s (€2)%s (1) 2 comghant

mgzzc’_l
=l -(leve) s s - Te
A
¢ ) Yesvs il T
g;(’»)*‘; ;;(n.') , = ex*go
A 4a ‘&‘
¢;(")=‘5 #.- (%‘) ) o & X
C mclac =6 c 1 a Comstant , @, = 2s;
J i f] o me

. (4-2-1)

A
where 3‘ % apply to the left and right appendages, respectively, and

the asterisked quantities are nondimensional. Using these in

(3.3-78) the exnressions for the mode shane integrals become

W /‘¢,. - cs[ f;;'(g*)cl-;' + [|$j‘(1‘)dx"]
-~ 0
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C;l[-{ x.;‘(x')e‘m' + /x' ¢J- (n )oh]

J

— et [ [Freis - PRI

(IT‘) A r

.

€; ‘-;[ /o&. Jj'ol%' + /‘geﬂ‘gid"‘j
-1 »

. oh ” a-‘”
v K = &Eff—"ﬁ'[ ] ¢ (x") &, (x*)dx*
-1

v [0 dr00 4]
0

L, 9 = l,t'....‘ﬂ

(4.2-2)

The cantilever mode shapes (3] for an appendage can be written in

nondimensicnal form as

%‘(1') ,(Cﬂ&ﬁil o= c.:F;!x") —f" (s.’nﬁﬂjlx'-— s:-\.ﬁlx‘)
o st <1

. (4.2-3)
Js ), l, Y N

where ﬁ; ' )" are constants, and the mode shapes are written for the

right appendagn (B; ). The modes for the entire flexible body Bg are

obtainad by choosinj

)

%‘(x‘) ={93:.“(-x‘) -1 & 2* &0

§=) 1 for symme dvic mede of B¢
{- 1 for anbisymmabric mode of B¢

(4.2-4)
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The mode shapes $.°, ¢-" together describe the j"‘ node for B_ .
F) J F
\ Making a chanje of variable, x* = -2", in the intejrals involving
5‘-‘(::‘) in (4.2-2) these integrals can be expressed in temms of the
integrals involving ¢:."(x“). And the inode shape integrals in (4.2-2)
’ can be expressed as:
| A
. N L} L )
i W pg. = c,.cmr).f ?, (x*dx |
é | A‘ a A“ P .]
X G) /V"V, - CJL(‘_S) [ l 1..¢J. (1‘)4‘&. + YQ./ ¢‘ (x )J*
4 [}
’ 1 Vaa sy 1w/ dx*
W) 4;; = €. (\+d ) j ¢, (x )¢J~ (x9dx
o
\
. €. 6. A_r A H
G Ky = ED25E (4gt) [ 2 0a") B0y dxt
’ ! ’

(‘jg""..-—-'N
(4.2-5)

A ~
The cantilever mode shapes @,i(x) (or ¢, (x)) are orthogonal
functions with respect to the mass density ¢, , and hence the following
properties (see (5] for details) can be obtained:
LA

A
0

‘ A A a2
[0 8, o0 codx = w8
0

lﬁ
g I ¢ 2" -é- A | et v, -o-, N
L = -—-i @ '4,z¢'~ ): T (4.2-8)
r

where o is a normalizing constant to be chosen later, w; is the

H

frequancy for the j"" cantilever mode, and J“ is the Kronecker delta.

VLR



These properties are triw for @ ;(x) alx. In nondimensinnal form

1.2-6) yields

l A
¢ € $¢‘(x‘) ¢‘-‘(x‘) da® = o d.;

-~

(ED)e. ¢ /‘3‘.'&., P ixty dut = ot O
- ¢ J

L (4.2-7)
Now, define 'a
a; s [ 8 (x*) dn”
. : ala, a d<*
e - /x ;" (x?edx
! P X .
% = J L&) dn (4.2-8)
[

which »y the substitution of (4.2-3), can be obtained from the

following:

Q = -F—T [:.'z{J + (sinapd—singt) — ~/‘ (et t +C—:f;!)]

e = -—;-{(s;n&ﬂl—seuﬁl)—'{; (C-c&pjl-*'c"ﬁ;t)
"8

* 31 (347, (simtgt 4 3apit) = Ccnt gt et }

%=1 *‘E'I—[‘IY{; sinfil sk B4 — (e 1[%) sing Lemt g L

"(‘-{‘-t)cﬂh’l Sh(&!] +;?:-!—[( ‘.'_-?_7; )Si-\.lPJQ

+ (l_':ﬁ.) sink 24t + YJ (ca2zpd - c-s&.zp‘.i.)]

(4.2-9)
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Usiny (4.2-7) and (1.2-8) in (4.2-5) tha mode shape integrals can He

expressead as:
W Mg, =< Grd) ey

Gi) Map, =20~ (e +via;)

W) bo; = 2 €9, §;;

(X

S
(iv) Ki; = ZUJ- C; €; 9‘. 533

(4.2-10,

3
where .= c;€9. and § = 1 have been substituted.
Althoujh one could consider many mode shapes we will restrict ha=zre
to two (J=1,2) cantilever mode shapes of an appendaje, the first and the

second . This 7gives four modes for Bg, two symmetric and two

antisymmetric, which are treated sepirately. fuitions  (4.2-10)
represent two "sets of mode shape intejrals for Bg , one for the
symnetric aode (d=1) and the other for tha antisymnetric mode
(§=-1).

Table . 1 shoas the various constants related fo the first and

second cantilever modes given by (1.2-3) for j = 1,2. Th2 nodes for a

i™ node are denoted oy :<:J- in the table.

4.2.2 Computation of Inertia arvl Stiffnoss vatrices

From (3.3-22),

Me a— - mg M
= W prP

Mow M = 2 g

ms (4.2-11)

A 2t i "
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1If M;;, AM;; denote the elenents of M, M , respectively, then

substituting for &, , M., Mvg, from (4.2-10), and €; from (4.2-1)
we obtain

ac; |
M;; = Mpa,gu_._m_‘.c <; (HJ)Q a;

My C-t[(.-&)(e;-«-v{a;) -—:;‘él-(‘*-‘)%]
k;i = .ts—(.) ? ‘
l\‘

(4.2-12)

We will now use the freedom t> choose the normalizing constant C‘. (see

(4.2-3)) so as to obtain some algebraic advantage. If we let

Mas - I’ ) J. - R (402”13)
m
C. = 3 E )
J D'

; ey 4D ™ q; — (146)a]

Jzl,2 (4.2-14)

Substituting for C.i from this in (4.2-12)

M”a Is : C‘J
(|+J)¢. Q;
—d N H

oo, ' ‘*°

M =T ""_:s’-‘ 3:7 [(;_J)(e,q-v:a;)-(%)("")qi]

L S
Ky =T 4 Mg g
M“D."

]

i}

(4.2-15)
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The data for the model of Fig. 2 are given in Table 2, and Table

3 shows the required input data Jerived based on the assumptions for
this model. Table 4 shows the frequsncies w; of the cantilever modes
and the constants D; for both symmetric and antisymnetric modes of B, .
Usiny Tables 1, 3and J the elements M;; , A; , K;; in (4,3-5)
are evaluated for symmetric (€= 1) and antisymmetric (= -1) modes of

B, and result in the following matrices Mo M, K, ﬁ, K:

3
1) Symmetric mode of motion of By (&= 1

M= Is lLooo -3 1240x10°%

-3 124uxt0 ¢ 1 e00

/"T= Is Lo °]

K = IS 3.;q4os’lxlo'z o
0 lL2933%4
~ ) | 0 8] -1
M=1 ’- i
o 1 -3 12eux0?
K ~3124nx10 i J
E = Is ro o 0
0 3 144o0sixi10t 0
LO o 1-2933 04
.

(4.2-16)
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2) Antisymmetric mode of motion of B (§=-1)

-r -
M= 1, [; T] Wl 15L°“°375‘: o-coesou]

kK=I, 3—211\63“0'2 o
0 |-293160
M= I i 1 0-603781  0:10680%6
$
0. 603795 i (6]
| 0- 106 5026 o i _
’l: = I (¢} ()

) 3-292193 x 10”2

[ ]
0o ©
— 1

o] o 1:293160

(4.2-17)

where M, K are the inertiz and the stiffness matrices and are defined in
(3.3-48).

4.2.3 Computation of Matrices for Generalized Forces

From (3.3-55)
H= [Hi]
Py
NI[Y"M.‘YN’ , Y, T,:. T VIMIN :?l-m,?;m,?;m.]
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Hc'.tlg y&nsx [?T('ri);s( - ‘,’%‘/"‘ﬁ] s (e?

R N S T R

(4.2-18)

in which i refers to the actuators and Jﬂ is defined in (3.3-40).

Also, define

k .= yimtul

a4
M= f" (4.2-19)

whare Kpe ¢ K are some constants related to the actuator strengths.

(Y

cow,
) = [00] = [e 70
#1 (7C)J l_‘l ¢t¢(1£.)
o = [#o0] = [ 4700
¢1’ (Y;)J %’ #'("a') (4.2-20)
where a a ~a . ,131.‘50
¢4‘ (Y; ) = ¢J ('(';) ) N

3,-'(1;') , 0 % x' s
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(2 = & M -x0)
§ 8{ 1 for  Symmetvic mede of B¢

-1  for antisymmehric mode of O
f d .
¢; (v.") = pryec] ﬂ-‘ ')l

1:7

= | (2 -1ex" %o
J
ALY . 1
gt (x!), o &% &

N R W ' (2) , osa’gd (4.2-21)

Substituting (4.2-19) and (4.2-20) in (4.2-18) and using (4.2-10),

(4.2-1) and (4.2-14) for Mg., € ., C; , respectively, we obtain:
H J J

Hom TR ™ ke it kWi R, kes]
a“lg % (FT,TI% Re: r':‘:', 4’ (rM) e — (\+6) &,

-_é;. %: ¢1 (v8) b, — (wé) &,
C’c‘ = I (;g %: %{‘ )kci. -']"T 4""(7;‘) o 7]

al,; A '
~ -~ ~ A «qh]l.-lb_zﬁ' Crt);n_l (4.2-22)
H"..[ H“‘ ,Hz‘ ’..-- "“': H.‘%‘q' -

where the values of ?‘_! ’ r‘/.‘,f, D, . D, for our model are g3iven in
[ 3

Tables 3 and 4. The distances r.': ¢ ‘c‘ represent the variable

locations of the actuators in Ba + By , respectively, measured in @,
direction. Note that r.’: ri‘

can be considered as one variable and

né
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the &, factor takes care of the situation of whether the actuator is

Substitutiny the values from Tables

Jand 4,

P T E AT

H"'l = I, Re: Z;

ro- atsésyo2 ¢.‘(~r¢‘)d'; — 0-0007101 4

)
p on B‘ or B, .
(4.2-22) can be written as:
1) Symmetric mode of B, (&= 1)
' = I: kr: W
{al
]

[ ()
[ “)

»y

0- 98530145 ﬁ‘(y‘.-) de; — 0:00034314

(3 qescraon ¢,"’(Y;‘) dec

o- 98530148 R*(v*) &g,

(4-2-23)

H=1I rkn’n“ Rea Y - - Reg Vit fhg, Rez -- - Res ]
Ry W) Ry W ke Y R 2 R WV ke
Ve Rey W, Res Ny - ke W 'lcn N R *ts‘“:l
‘ 5=Hu- :
2) Antisymmetric mode of Bg (= -1)
ﬁg.‘.' Is ke Wi 5 l-Ai\;,l= I, ke, B
W, = ru(‘.’. = ro-ﬂs:ooqc 8" (v ) e
_w,‘"_] 0. 98521022 3 (+) dg,
2, - fa:"‘ = [o- 91530048 2 (¥4,
&y o s 1622 () &
He T, r“n " hn"é." v Ree Tt R Rew -« - Reg
Rpy WO R Y. Ry WP R ® k. R
kg, W h;-,_u{"---hn"“t’ 'c‘l:’ hn.':a - R
3= Hu (4.2-24)

e
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where ¢J (r'-_ )e % (r; ) are to be appropriately substituted according
to (4.2-21), ad Q is defined in (3.3-48). The vectors W ,

[

2.  are completely determined for any rr.

4.2.4 State Space Form for System Equations
Having obtained the necessary matrices we can now write the
equations of motion (3.3-49) for symmetric and antisymmetric modes of

Be as

F‘I;i+:7l'6 j ?':=9

1

(4.2-25)

where M, K, D are obtained from (4.2-16) and (4.2-23) for the symnetric

mode of Bg , and from (4.2-17) and (4.2-24) for the antisymmetric mode

of Bg . To obtain the orthosgonal form of these cquations (vehicle

modes) we diagonalize M, K by the principal matrix V as explained in

section 3.3.5. The principal matrix is jiven by

\7 = K o ©° Lo lgnnc‘-vk mode of B¢
0O | o
0 o
[ . RUTTIC I
V=il 0-756797 07 for av lapamevic
o - 1:2154096 ~-0°'106278 mode f ©f
0 0:001363 - I-oo‘]oqu

(4.2-26)
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The principal matrix for the symmetric mode of B is taken as the unit
matrix within the’working accuracy of the numerical terms. This means M
in (4.2~16) for symnetric mode is appr ximated as a diagonal matrix (the
off diagonal elaments are much smaller than the diajonal elanents). Or,

ﬁ‘- T, E  for symmetvic mode of B¢ (4.2-27)

where E is the unit matrix. The orthogonal form of the equations, from
(3.3-53), is

~T ~
=V
‘g rA g’ &Q_; (4.2-28)
where
g.r: [go ' §1 """" gﬂj
A - —L ’\."TK V = d-w:b.a [ ), ;1 ‘)3]
s (4.2-29)

The coordinates § are vehicle normal modes. For the symmetric mode of

B these are the same as Q’ cooriinates. Table 5 gives the

values of ’A;_ for both symmetric and antisymmetric modes of BF‘

Now, let

%:H”‘u ﬂn.""‘lm
tﬁtl far - - - Ram

ﬂ." ‘31 s e = “"M (4.2"30)

where H is given by (4.2-23) or (4.2-24) for symmetr ic or
mode of Bg « Then

antisymmetric
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(4.2-31)
whare
A
ﬁ'ki bl ﬁg; for 35mm¢+~ic. mode of B
3
ak' = Z v, R;¢ for antisymmetric mode of 8¢
= (4.2-32)

and '\7_-”‘ are elenents of V . 4,K=21,2,3, (=1,2,...,m. From (4.2-32),

(4.2-23), (4.2-24)

A ~ ~ ~
£..= Vi B * Ve ﬁh. + Vg R3c , k=33

e

fe = h:; ‘Ynli. R = ke
e = ke “,’ T fao * Ree 2l
By = Reo Wy b = R =’

(4.2-33)

where for symmetric modes of By Vix= &, » and for h . ,k=l,2,3, the

first or the second set can De used for any ¢ (1,2,...,m dependiny on

“'/C

I
- ;
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the type (force or torque) of an actuator. Of course, appropriate

vectors W. , Z; must be used for symmetric or antisymmetric modes of

B' . Substituting for h . from these we obtain:

A ~ K] ~ ) =~ )
R ™ Ret (Vo Wi+ Vg Wi« V™

A ~ Y ~ (o) ™~ «)
‘g.‘, = k’.-. (V“_‘V.; &?» V._,_ w| <+ v"- u‘ )

A -t = s
£, = Rg (Vn"ti + Vay W) + Vas )

for force type of actuators for any (, ¢=1,2,..m

A ~ ~ W o~ )
R = kg,; ( Vg + Y &)+ Yy, ., )
A ~ ~ li’ ~ lQ
az‘ - kCL' (Vv‘) + Vu. !' + v’t *1 )

~ O =~ W)
a“ - kc; (v‘s & Va"' " L VJJ él )

(4.2-34)

for torque type of actuators for any t(, t=1,2,...m
where ¥, W, 2; are appropriately substituted from (4.2-25),
(4.2-23), (4.2-24) for symmetric or antisymmetric mode of motion of Bg .
Also, note that a combination of force and torque types of actuators can

be used (substitute appropriate set for that imnunber: the total number

of actuators is m).

For the symmetric case these reduce to:
A "
Ri = Rec M
[ ]

é‘. t Rge (o«u‘noz. ? (vl) &g - 0.00071014)
b L]

a&' c hh‘ (o-ﬁ!raomgﬁ'(vf)d'ﬁ - 5‘0903ﬂ334)
[

$or Gm ‘,k achaters -Fv vy ;,,g:ll'}.'.--.'M.
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= hc.i

kcl (O-QOSG 5101) ¢'./(‘1£‘) J;;

N
~
.

L)

sb
w
1)

Re: (0-a8s30145) & ()

for trque bupe ackvadors favamy O, 43 (4,2-35)

The state space form of the equations (4.2-28) can now be obtained

in the manner described in (3.3-61), (3.3-52), and for the system of

vehicle normal modes g this is given by

X" =2 A"x"+8%u

(4.,2-36)
whare - . .
x* = [gs L "\ 1\ gi- g’-]
A" = diog \-.A: Ay A;J
o [ » "
B = 8'» ', AK = 0 '
Bt‘ ‘}k O
* : |
&) Biefee e
éh\ ‘g; e ‘kn
ket 3 (4.2-37)

For symmetric and antisymmetric modes of B, appropriate 4\ and ?\uc

are to be substituted from Table 4.5 and equation (4.2-34). Normalizing

the state variables as described in section 3.3.7, we obtain th2 final

state space form corresponding to the orthogonal modes § as

’
. e a——— ——



e
AR

\
R PR

[RTE S

Ny » No being the cnosen weighting factors.
for both types of modes of Bge and 2,, 2
4.5 for the appropr iate mode of 8, .

t=1.2,...m are to be similarly sustituted from (4.2-34)

X= Ax 4+ 8u (4.2-38)

where

A= D;‘A, O, = J*"*g [A| AL AJJ

D, =J&«9[N. Ng N, N, Ny 5,_]

A‘: 0 q,, ; A.l-.-ro %4 ) AJ‘ o Qs
0 o |- A

- )3
Qse
N, N, N,
-1 _a
B bu} =DN B = © ° °© °
A a A . A ]
-'t A Bn By - - Bime

(o
o
o
'

(o]

4

A
&) . ! . ks, 2, 3
k-1, 0 ) l’u_,a s = R, » o
Nu_\ "',“4_‘...,-&
. * (4.2-39)
L Kb X L=
2u+o"——-—~ ; "zm;"—ﬁ'ﬁ’ , k20,1,
k x

The value of A, is zero

3 3re to De taken from Table

[ Y
The elements h.r Ral,2,3,

using (4.2-26),
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(4.2-23) and (4.2-24).
Note: This orthogonal form leadc to simpler A matrix consisting
of 2x2 diagonal blocks which simplifies the algebra (the system can be

separated into N+l second order subsystems for computational purposes).
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4.3 Approximate Degree of controllabiiity

In chapter Two, section 2.4.3, ' outliney the procedure to obtain
the spatial form (Def. 2.3) 'in real space for the state displa.x.ent
§. PFollowing this procadure we will first obtain the Jordan canonical
form J of the matrix A in {(4.2-35), and also the transformation mutrix P

and P"'. These are as follows:

Tedeag Uy Py -3, o3 -dh]

o 1], PadgCa Bl
0 ©
l |
l | |
. s , .
o & |’ Twed e, =i M e -l
) 2

b r-—" < -
1 ’ Y rc. -\ ! '+%3 2 N
-t l o P- \+€‘ \ . =
P - N 2 = 3 3 2c
| / ZC‘ e N L C.‘_ ¢
0 Ry \

(4.3-1)

where a_ , a,, , 3, , etc. are delined in (4.2-33). The eigenvalues
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are 0, 0, %ilA;, #ifd; and the Jordan blocks are J,, J ,....3 of

order \)k equal t 2, 1, 1, 1, 1, respectivalv, Tha spatial fomm is

. r- rg”'tﬁ lukt’- dx
§< |[P b.--%] '
0 e Fpoul)
e 75t B e (4.3-2)
vhere
o ~ [ (o] I ~ r °
> - \ ° = . =
( 0 Va-, >t ° » s .'
n 1A= ' '
o o A= /e i
o O "“/l et “.“m«‘l— ’1
e o© o} o !
o o | L o ] | o j
~ o N ~ o 7
Pq = . Ps T r o
o c
0 0
Vo | o
H-(: ' ﬁ'_&-
' -
RV e i
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' €

6 «c |0 © “"‘\ «.J”“\ °

3 ‘c

e .[o 0 o © m ""'“*]

'y

;»,.[o ° o 0 J"‘ vyt (4.3-3)

2Cy

vNow, replace the complex pair of partitions in (4.3-2) by real
parcitions from (2.4-25) as explained in section 2.4.2, to obtain & in

real space, i.e.,

M t
§=C [ «(trd (4.3-4)

where
(o]
C s fe, ‘;"“‘c]'r‘ ° ° ° °
| ] (o}
a1t
i L o |
0 0 — (o] =]
; h-vc\‘
| o o 2} al o] o |
et
\
o == o |
[+] o] o \F;Z.:
Q‘ ]
0o o 0 o ° "'";'J
L I*q




TR 1 % R

X

r‘u . © . ) -
AT .
0(.3 < (asecdﬁzt + Pz ""J‘T‘t) Bu
Py AX
w | | 2Bl - RRarm)Bn
AT
¢ Q (é_‘cﬁﬁ;‘b + B sm{3t)Bu
- (4.3-5)
AQ x e
%] L (R sindAt — fa C"”-‘t)su.l
in «hich
A A AR . AZx
A AR . 4T
° ! P=Ffy+fs (4.3-3)

Now, since all the Jord~n blocks J, 3re associated with distinct
eijenvalwes, M; =1, j=k=1,2,...,5, which from theorem 2.3 3jives the
necessary condition m 3y 1 so thit the systam may be completely
controllable (m is th2 limension of u(t)), There is no need to consider
the rank test (necessary and sufficient condition) for complete
controllability because we are 3oing to proceed with the derivation of
the approximate dejre2 of controllability (", and [rom theorem 2.0 we
know that the system is uncontrollable if and only if p‘ Joes to zerd.

The r.h.s. of o(t) in (4.3-5) can be writtan as

ﬂ(t)-&n.a["(A oy “c] ral w
81

| B
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iz9

= ,—°(A B.‘L
¢ W
s 5 (4.3-7)
o, a_,uJ
whera
X, = | -a,t ; Hgmivet ! -
0 a, sm At -é:‘“ 2
Cos A, & L LA
O(Cnh.q-g:: vy % <, 3 ; B= I
¢ e
Sh\.mt —‘-"’Et +
€2 - B,
B = 0 o © . .... 0
" " a a A K= ) 1,3
)
o I L o |
Ny J
(4.3-3)

From these, we obtain




[eore

BT SR

(4.3-9)

- - A
o L carme 3

where a, , 3,,, 3, , <, S, have been substituted from (4.2-33) and

(4.3-1).
The annroximate recovery region R% s dimensional narallel-

onined) is given, according to (2.6-3), as

R‘-[/"‘l , '{;c; y T "'16c'o]

(4.3-10)

where, as in (2.4-2),

T
{. =wmax [ o, (0dt ¢ €0, 7] luf~1
) . v g (4.3-11)

Rl 0 m , 3EL, 2,06

’

and frow (2.5-3),

(C-r)"g [7l 71. - . e 7‘]

19 = 9T % e (4.3-12)

-l
From (4.3-5), evaluating (C') we obtain,

I9l=d; W9l @ 5 Nagh=liec
k! - H'C:'
lla,n=_1‘:°~‘ o Nogh=Twel 5 Nalh= Jc

' (4.3-13)

Applying the maximization to n(s(t) in (4.3-9), we can obtain:

LYV
v}



YL = T}:- .i' l a'\\.'
T - | A
{3,___f;:‘~‘ {;.g..‘mae} bYW
-r m a
+c > Rac
A f;__' ¥, lwﬂti‘“}%‘ |
fo o S amel] 3 16
7, N

1, - L5 Teammelat] 5 il

| (4.3-11)

'n2 nonmnal distances to the surfaces of th2 parallelopiped rejion

are obtainad uwsing (2.5-11), i.e.,

d.,. « Lo e b
9,0 (4.3-15)

)

where {j,ll 9; It are given in (4.3-14), (4.3-13), respectively, and
A

h”i are jiven by (4.2-34).

Assuinin) that T is lonj comparad with the period of the sine wave
(cosine wave) (so that the effect of partial completion of the final

2risd of oscillation of the sine wave is neglijible), the absolute

value of tha sine or cosine wave can be replaced by 2/r , its areraje
over a period. With this substitution in (4.3-14) and substituting for
llg; I from (4.3-13), (4.3-15) becomes




zNO ¢ 3|
d,= L 5 1&;]
N, Y|
b A
= 2T L &
ds N‘ m %I 1;'
4, « 2T
. &
4 7‘_-':‘-‘ ;q l 1&‘
‘ - 1 &
4.‘ d; WNt AJ gl 3\.\
’ d - T A
6 7‘.'—‘1 §_:_ \ ﬁ,,_l

(4.3-19)

in which (4.3-1) and (4.2-38) are us2d forc,, <,, 3,,, a0 and ag, .

Th2 approximate degree of controllahility p‘ based on the

parallelonioed bouni can now be written, accordine to (2.6-12),
as

P“:mfv\ dj , N
4 (4.3-17)

where the d‘., are jiven by (4.3-16). To evaluata (“ we need to compute

A
Iheets  x=1,2,2,  i=1,2,...,m, which are given in (4.2-39). The

information on the type and strenjth of actuatdors and their locations

A
is containad in hkc . To put (4.3-15) in a more elejant form, define,

in (4.2-34), the followinjy:

- ~ P S W, 5 )
r;u('{o'. ) = VY *VaeMoF Vix Y2

e ~ ~ W ~ W)
. s V \Y/ B 4+ V. =
f:_ ('V., ) ik T Vak & e ®, (4.3-18)

Kst't’)‘ Lte ! &

, S

where i refers to a particular actuator. If we pick a certain location

ALY

g = e e i s " .

puran g
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a

r: for some actuator i=l then the right side of (4.3-18) is a number.
Althoujh we will use a finite number of actuators at discrete lozations
we can pick any value for ré“ within the available ranje since our model
is a continuua. Hence, the index i can be dropped in the above and r

considerad a continuous variable. Also, 3s mentionad in saction 4.2,

L) a : . N
t/ and r. can be considerad as one variable since the chanje of

(8%

location from the rijid body to the flexible body is taken care of by

A
. . . N -» .
Jﬁ. in g and Z-‘ . Thus, there is one continuwus variable r in b‘

direction. The functions in (4.3-18) then can be written as

~

~ 4/ r~
r;,.k (‘*‘) T Vi Y o+ Vi W o+ V3 Wy

~ ”~ o~
r:K (**Y = Vi + Vo B + Vi By

(4.3-19)
kKet, 2,3

W= rw\:’ s ro QQ;‘5q°1¢ (Y') —_0: °°°_”°'4"T
-w‘j LO 9353014'5,5'(7'){ - 0 oooSﬂalu

0.qsvesqo2 @t (~*) §ey
(% 0. 18530145 4;_"(7‘) Sev

™
»
—
M
n

$fov S-,mn.-hﬂ‘g mode Of eF

We W |« [o. ass3ecqs ﬁ’(-v“) dey
[ lo- e 21622 9?:('1‘) 8ey

[

———t




Vo

. Fae

| 34

/
2. (™= 0.985380948 ¢‘*('f‘){;,

&, 0- 98521622 4_:’(1;);“

for M'l—ihamv-‘}v-‘c mode of 8,

¢t (v*) = g.(l‘) , =1 «sx" =0
J
é\.*(%‘) , 0o £ x"s |
J

T Ay = § 8

~ _/ * o
Pt =) Frwy = =0
Jd

An/ s - s \

¢j‘ > , o *

- £

gg*l(%")e-cf%'/(s") , © ss"< | , S=—%

J= \, 2
§ = | fov ngmc""ﬁc mede of B¢
&" | ‘F"' Qm""°33me‘|‘vie med & ‘* GF

n
JF* ) {o T € en (4.3-20)

! v* e B
In the above the index i wnich refers to a particular actuator and its
location alonyg r® has been dropped. The functions f; ~orrespond to
force type actuators and the functions l':_ correspond to torque type
actuators. Let
@) . ¢ .
r‘F = I',’,(*; ) ; r'“' r:.k('f: )
»
= P (v )
e
K= 1, 2, 3

f"‘ * r:(“‘) j r'cu: (4.3-21)
c



e

Then from (4.2-34) and (4.3-18)
<
‘ akc\ = l Re. r:.-kl , ¢ € F (fra (»,pe)

|k, 7S

<k

cel (hvvub}u) (4.3-22)
Ke 1,3, 3

We will taka the constants kﬁ ¢+ Ko, 'O De positive (se2 (4.2-19))

whizh then leads to

“\k;l" kﬂ'lr;i‘ foe v @ F

”::| o €L (4.3-23)

Kel 3,3

and

Sthyl = Shalni] + $ ok,

-oJ‘
bex
L= Jje¥ el

(4.3-24%)
kel, ¢, 3

Tazse are to be substitutsd in (4.3-15) to compute the 1; whose ninimum

value, according to (4.3-17), is the approxinate dejree of

controllability (" of the systen,

In the next chanter we will discuss the results and
exanine the effect of actuator locations on the decoree of

controllability of the system,

L ees e v e o
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5. RESULTS AND DISTUSSING
5.1 Introductian

In chapter Four wo derived expressions for th: aporoximate dejree
of <controllabilicy ("* bas2d on a spacific nodel of 1 larje flexinle
spacecraft. In this chanter we will discuss tn2 rasults for sinjle amd
multiple actuator distributions and exanine th2ir eoffeszt 2n th2

, , .o "
appraxinst2 degre2 of controllability @ .

13¢
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5.2 Iafluence Curves for Actuator lozations

The exprassions for the normal distances d; in (4.3-13) can be

written essentially 3s products of three types of functisns £, , f;

and £, whare £, is a function of total time T, f, is a fanction of

weightiny factor and f, is a function of actuator strength and the
effact 2u2 to its location in che systen. Or, a typiczal normal distance

4 oo bz written as

3= £ £, (3.2-1
w202
,‘;' = { ()
f, = % (v, ﬁ) '
o~
5 (%)
‘3 = 5 ( kg , Re | [f},) I ‘) (5.2-2)

[t is not importanc how w2 define E‘ ’ f; ’ f, ;s the only sijnificance
is that T belonjs to f‘ , the weighting factor be2lomgs to fz , An1 the

terms rol-red to the actuastors oslomy to f

3 Henze, in (4.3-13),

notiny (4.3-24) choose

1‘3“ ’c.s‘(kF , Re, LR, ”11)

B T TP SW N

tel ie¥ JEC

k’ 1' 2, 3 (502-3)
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Then, the normal distances dJ. in (4.3-15) become

2R=1 LR~} L3

k=1, 2, 3 (5.2-4)

wers f: is definad in (5.2-3) and the rest n221 not be -definad
precisely at this staje. But we will include the A temm in f, so that
th2 dimensicas of f‘_ will be the sane in aithar form (see (5.2-2)).
The faztor A is known becaus2 it is 3 systen constant. Hence, the
uanknowns in 2; are total time T, weightim fa=tors N, N, normalized
actuator stremths K, . k. , and the influence factors I 1, IR due to
the locations of actustors. All of thas2 must be known before (0" can
be somputad.

If we are given a distribution of actuators we can presume th2 tvpe
of astuntor (force type or torgue type) at any jiven location and als»
its stremyth (k, or k. ). From the knowladje of only the type of
actuator at any guven location r® the I['] (1R[] or I 1) factors are
datermined. Wit) the additional knowledge of thiz strength of thasa
actuators the function f3 is deterained. It is reasonable o presume
that we may not want td chanje the weighting factors »ften. Hence, L
could also be determined if we dacide on a set of weighting factors for
the systan states. This leaves total time T as thz only remainim

variable of d.} , S0 d ; can be plotted as functions of total time T.

Al hence, @ zan be evaluated for any T.

O a——————
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The procedure to Aetermine the  approximate ‘iejree of

controllability C' can be sumAarized in the followi=a) steps:

1)

2)

3)

4)

5)

6)

, . [ 4
Choos2 the lozations T, r‘,...., r

" - whare the actuathrs are

to be located. Classify them ints the two Jroups, ~ne for tha
force type acrators and the other for th2 torgque type
actuators.

fabulate If;n: and Iflnl velues for these locations
corres ording to th2 appraopriate jroup and far the type of mode
of motion of B (symmetric or antisymmetric).

Compure the contribution of each actuator by taking the product
of its strenmyth (k, , k. ) and the appropriate I value
tabulated :in stzp 2.

Take th:z sum of all the contributions in step 3 to obtain the

function
m
k N
£y2 ) Ihyl
et
Choose a set of weignting factors N, , N, nd compute the
funceions

'F:.Cq—ls ‘F:...'H(N;’ J_;.)

ol PR PR,
£97 0 2R

3 2

in the oxpressions for JJ r J21,2,.4.,5.

. . i i .
Given a total time T compute fl = f|(r) in the expressions for

Qe ’ J’l,z,..-,ao
J
- - -
= - Y, = A - -“"..'m‘““"-“" e s i 887 (8 &tk ran ¢ s b

|

o~ ————————" A
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7) From ti.ese evaluate the normal distances :IJ- as frllows:

4 L1 Lkl Kk
2k=-\ i 2 R

ik Ak Kk
dyy = F K K, k=22

3d) Th2 approximatz dejrze of controllability ("' of the systan
hased on the given distribution of actuators is the minimum of

all the normal distances 2. evaluatel in step 7.

J
Thus, Dy the sbove procadure (3* can =e evaluated for wvarious
distributions of actuators (type, strenjth and locations known), and
these distribution patterns can be rinked in descendiny order of
(*, the digher tne f" the better the corresponding distributisn
pattern., ‘The decision as to which of a jiven set 2f distributions is
becter may or may not depend on T. TIf a limited ranje for T is
prescribed for contioal purposes (this may be the case in spitecraft
control) then it is possible to decide from tha (“ sarves tha
distribution that is best on the averaje over this range of T.

At this point we <Tan say our objective of rankim wvarious
distributions is fulfilled. However, we could gJain a little more
insight into the behavior of C' from the moint »f view of lacatisn of
actuators from what we will call influence zurves (I[*| curves) for
actuator locations,

By || curves we mean the two sets of -~urves lr‘FI and lle. Tha
I[;_.I curves belony to the force type of actuators amd che 'H"‘l curves
belong to the torque type of actuators., (Noto: thes:z ar2 scporate sets
of curves for ths symmetric and antisymmetric modes of motion of B8p »

these two types of modes beinjy treated separately.) The I "1 curves are

-r“»wv".'l v — .. .. ITTEE e
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functions of only the ac uator location ¢®. A If'1 (1fhi or IfL1) set
consists of n/2 curves If:l (I3l or |f:‘l), k=1,2,...,n/2, wh2re n is
the order of th> systen, i.2., there arc as nany component curvas »>f ||
as there are xsition variables (as opposed td velocity variables) in
the original state voctor (not normalized), (For osur model nm5,) Sath
IFLI curve corresponds to a particular mode (in this case vehicle nornal
mnade) . But tha distances 1; need not in jeneral corresmond to any mode
in tha original systam, becausa the 35 ara alony normals (¢ the
surfaces »of a parallelopipad rejion R") whose orientation in the state
space dupanis on the shape of l!‘.

Fijuras 8 shrouzh 1. shos =hess If! curves. Fijures € aai 10
represant the sets of If}l curves for forcs> tyode actuntars for th2
symmetric mode and antisyametric node of motion of Jdp, respectively.
Figures 9 an? 11 rzpr.sent the sits of !fil curves for torqur tyoe
asturtors for the sym2tris mole and antisywmetric noie of mozion of
Bg . These curvas are plotted as functions of th2 absolute value e
of tho actuator locatiosn, The absolute value s us2d Decause these
curves are Juplicatad for ¢ t” (the apoeniajes are identical and we
have 3 syma2tric phvsical system'., Tuz location r® is nmeasur2d from
the point C (see Fi3. 6) alon; S‘ direction. For looations

2 ¢ Tad ¢ g: ’ r: = J,0333%7333, the ytuator is on tha rijid holy Ba
and for locations r: < e g 1+ r: ) th2 actuator is an the flexible
body aF on 2itner of the two apnendajes. Thi2 absolute value fe™ is
plotted alanj the x-axis ani the |f:'l or lfi‘l are plottal aleany the
y-axis.

From (4.3-23) it =<an be sz2en that the contributisn {u: t> each
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e

A

actuator is added up measured in terms 2f absolute values to obtain the
d‘. . MoreoJscr, the contribution of every actuator is a product of two
terms, one invalviny only the stren3gth of th> actuator (ke , k. ) and
the other involviny only the effect due ty its locatijon In th2 system,
Th: influence <curves (lr‘l curves) are very us2ful in <ommuting the
sontribution to the dejrce of controllability (" of each actuator.
Bacause thase curves, beinj indepemient of actuator stremnjths, can be
used for diffcorent actuators at the sane locations, and the total
contribution of a new set of actustors is obtained simply by addiny up
the products of tha new actuator strenjyths and the same influanca
faztors for tho old set.

In th2 next s2averal sactions w2 will exanin2 various sptions >f the
sontrol actuators and their beariny on the aporoximate dejree of
sontrollability ('* of che systen. Th=s2 22tions will be exanine? for
both types of modes of nction of Be, symmetri: and  antisynitric,
These options are as follows:

1) Sinjle focce actuator

2) Sinjle torque actuator

3) Multiple Actuators

ot o ettt i b, ... ... . s M e
.



5.3 Single Force Actuator
5.3.1 Introiluction

The normal distancas 34, , from (4.3-15) (m = 1 in this <case), are
3iven by
Lo (E )
4 = (I k) IR
d (r:"‘:&hm)lﬂil
4, « (Fe) 1%

N,

2T A
dy * <rn,{'\7_,k" | F"

d + (2T ke) [T

LA

(5.3-1)

wher2 (4.3-24) has been usel. For any chosen set of weightiny factors
Neo '!Tc, far any total time T and for =ny strength of the force atuator
each d; is proportional to tha height of one of the three curves >f ||:l
(Fig. S for symietric mode and Fig. 10 for antisymmetric moue). Thus,
if d; were to be plotted as a function of location Ir¥l w2 whuld have

six curves, a pair of them proportional to each Il: Bacause of this

k' .
proportionality the maxiaum, minimun and zero values of any 4; curve
correspond to the maximum, minimun and zero values of its corresponiimg

IQ“I curve, i.2., the behavior of a II':'I curve is the same as the
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behavior of its corresporiim pair of d; curves with respect to these
values. Therefore, we can examine the Iﬁ'.“l curves td> 3ain som2 insizht
into the bchavior of th2 approximate dejrez »f controllability (" as a

function of locatisn Ir®l of the actuatar.
5.3.2 Symmetric ode of B,

Figure 3 shows th2 sat of il';l curves for th2 symmetric mode of
motion of Bg . There are four locations of Ie® at which @* j0es to
zero indicating the system is uncontrollable at these locations. The
1ML 1 an3 1T, | curves have one such location 2azh and the l[},‘l curve
has two suzh locations. Th2se locations are tabulated in Table S.
Recall that for the symetric case the vehicle normal modes are the same
as tha ayorid modes .‘{ (8,7 ), and hence tha zero of any lr:-_'l
inlicates that th2 corresmnading hybrild wode is uncontrollanle. At
It"l = 2 (ppint C) the rigid body mode @ is uncontrollable but tha2
appendaje aodes 'l' , 71 are controllable. At this lozation the
actuator can gJenerate no torgue on th2 vehicle in the inertial systen,
so 8 is uncontrollable. The symmetriz motion of Bg (Fig. 35) produces

only translatory motion of B, and by controllinj the '] modes this Zan

R
bé killed. But if the disturbance includes 8 this zannot he
controlled. The locations on B, at which [(},1, I[g,! are zero are
inertial nodes (obtainad by puttim h_l:R_ = 1) for the corresmniiny modes
(first and second modes) of Bg . At an inertial node tho effect of the
force of the actuator is not f21t by th2 correspondiny mode, and hence

its shape cannot be controlled.

fud o
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Having marked the zeroes of the |[}| curves let us examine how they

behave over the ramge of Ir®l. For any location It on the rigii body
B (0 Ie" r:) II';‘I and [fLy] =re constant (Fij. 9), hence no
improvement is attzined in tha controllability of the two modes '1‘ and
1, On the flexible body Be for locations 1£® baysad the zaro of
Itk | (1% = 1.05) wp to the crest of IfY,! (Ir* & 0.5) all thrae
I}, | curves (see Fig. B8) increase monotonizally. Likewise for
lozations beyond tha second zero of Il':,,l (1r° & 2.%2) u» 5 the tip of
the appandages all the three If},l curves increase monotonically.
Hance, oser these two ranjes, 0.05 § 1™ § 0.5 and Fad > 2.32 the
Jdejree of controllability (“ of the system inproves as |r®! increases.
Moreover, the individual maximum of each |f,| curve occurs at che tip
of the appendajes, and hence (" is naximun for the location at the tip
of tihe appendajes.
In conclusion we can state the followinj:

For the symmetric mode of motion of B, if 2 single [nrce
actuator is to be used for attitude and shape contrnl the best location
for the ac:uator, from the contrallability point of view, is the tip of
the appendajes regardless 5f the strength of the actuatsr, the total
time T allowed for control, and any set >f weightiny factors one mijht
wish to choose for th2 normal modal coordinates.

Other salient feaatures for the force actustor for symmetric motion
of Bp are:
1) Locations in th2 neijhborhood of the 22roas of the influence

curves (Il‘},l curves) ! Since at the zeroes of ll';.l curves the

degree of controllability (0 of the system goes to zero,
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locations in the neighborhood of thesz 2eroes sxhibit a very
poor Jquality of contrallability of the systan ani should be
avoided as far as possible.

2) Two bDroad distinct ranjes of Ir* on QF . 0.05 & Ir®| & N.5
avl 1™ > 1.32:  Qver thes2 ranjas controllability of th»
systan inproves steadily ( f‘ increases) as |t™ increases.

3) Controllability of the 8 modz (rigid hody mode) improves
st2atily as Ir¥ iacreases aver its antirs ranje in the systan
g It™ & L+ ).

4) a2 guility of controllability for thz two modes M, and ],
r2uzins unchanyxl for locations an th2 rijid body B

] "
I & rg) e

R
"¢ ir

Thes: foztures can be usefully applied wian searching far other suitavle
locations for the forc2 astuator than the tin of th2 apnapdajes. 3uth
ocsasions wmijht arise duz to physical rostrictions and othar oractizal
considerations. In practice one would have to consider a sufficiant
naader of modes in th2 model 3 jive a jood representation of “ha2 systan
dynamic b2havior before th2 actuator location decision van be mada.
Thus, for the cas: of symnztric mode of motion of Bg ve have some
valuabla infornation rejardiny the gquality of losatians 1e* in the

systan when 2 force actuatdr is td be usal,
5.3.3 Antisymnetric vz of B

Figure 19 shows the set of Ir;l curves for the antisywetric mode
of motion of Bg . Th2 zeroes of thz ll:l curves are tahulated in Tadble

5. FPFor thz antisymnetric modes of Bg the vehicle normal modes are

Jiffarent fron the hybrid modes .'i (6,9 ). But f,‘ is sinilar to tho

e -
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rigid body mode & and g' and §, are similar to the appendage modes
1‘, 'lt . There are four distinct locations Ir® at which at least one
H'Ll goes to zero indicating system uncontrollability. At Ir% =0
(popint C) all Ir',l curves are zero which indicates none of the three
modes is controllable. As stated in section 5.3.2, at this lozatisn the
force actuator cannot jenerate any torque on the vehicle in the inertial
system, and hence @ is uncontrollable. The antisymmetric motion of B,
(Fig. 7) prodwes only rotary motion of By, and since this is
uncontrollable at |r"| = 0 the appendage modes 1+ M, are als
uncontrollable. The locations on B, at which II‘LI, If"_,l are zero are
inertial nodal points (obtained by putting MR =0) for the
corresponding vehicle normal modes (the location Ir®l =0 is also
inertially at rest). At the inertial nodes the effect of tha actuator
force is not felt by the <corresponding normnal modes (hence,
it is uncontrollable,

As in section 5.3.2 we will now examine the nature of the If}|
curves. For locations in the range 9 Ie®l re“ (in the rigid body
By ) the II",I curves are all linear which indicates improvement of
controllability for all the modes away from |r®l = 9 up to the root of
tha appendajes. On the flexible body Bg for locations beyond the. zero
of ITL, | (Ir*) = 2.25) up to the crest of Il 1 (1] * 0.5), and deyond
the zero of Ifh ! (1r®l = 0.32) up to the tip of the appendages all the
three In.“l curves increase monotonically. Hence, over these ramjes,
0.26 ¢ Fad! £0.5 anm le™) > 0.82, the approximate dejree of
controllability (" of the system improves as Ir® increases. \iain, as

in section 5.3.2, the individual maximum of each ]f;‘l curve occurs at
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the tip of the appendages. Therefore, (‘“ is maximun for

g
[T

location
at the tip of the appendages.

The conclusion here, for the antisymnetric case, is the same as

that for the case >f symmetric mode of motion of Bg, in section 5.3.2.
The tip of the appandages is th2 best location for the actuator for
attitude and shap2 control regardless of the actuator strenjth, total
time T and weighting factors for the normal modes.

Other salient features for th: force actuator for antisymmetric

motion of By are:

1) Locations in the neighborhood of the zeroes of the influence
curves (II':,I curves)! Same comments as for th2 case of
synmetric motion of By, in section 5.3.2, apply.

2) Two broad distinct ranjes of Ir® on &, 0.25 & Ir™ ¢ 0.5 and
lr®l » 0.82: Same comments as for the cas2 of symmetric motion
of Bg apuly.

3) Controllability of all the ~ormal modes improves steadily as
{r¥] increasss over the ranje of locations on the riyid body Be
(0 1% < r:).

As mentioned before th2se fezatures can be usefully apolied in the search
for other suitable locations in the system for th=z force actuitor than
the tip of the appendages.

Thus, here also for the case of antisymmetric mode of motion of

Bg , some valuable information regariing the quality of locations Xl
in the system is obtainai with only the knowleige that a force actuator

is to be used.

e
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Summarizing, for a sinjle force actuator control we can say that the
tip of the appendajes is identified as the best location for attitule
and shape control f{or sywetric and antisymaetric modes >f motion of
By . This conclusion is independent of th2 strenjth of the actuator to
be usad, th2 total time T allowed for contral, and tho weijhtiny factors
prescribal  for the modes. Ad2ditional information is obtained which can
be uszful in searchiny for other suitabple locations in the systen. The
information on rejions vhsre an actuator should not be losat2i, and the
information on distinct ranjes for locations I r® where improvement of
controllzhility is guarantezd as Ir®| increases ire very useful. For
ti2e syanetric case, some understanding of the guality of zontrollability
is jainad for the rigid body mode # and the aprw:ndaje moles 'll A
The information for both th2 symmnetric and antisymma2tric modes of motion
of B¢ taken tojether provides 2 Dbetter understanding of th2 systen
controllability, and identifies certain narrow ranjes for locations I ™
that will be suitable as altornatives for the force actuatoar in order to
effactively control both attitude and shap2 in both types of motion of

Be .

e
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5.4 S5imgle Torque Actuator
5.4.1 Introduction

The noraal distances d; , from (4.3-15) (m =1 in this <case), ara

given by

Q.
A
"

(5.4-1)

r
4y = (o ke )
d =(7:;; kcl)\rfu\

where (4.3-24) has been used. This is similar to the case of a sinjle

force actuator in section 5.3.1. The d; are proportisnal to the IR

curves. The rast of th2 arjument is exactly the same as for a sinjle

force actuator except replace Kg DY ke, (th2 strength >f the aztuator)

and H’;kl by lr‘“| in section 5.3.1, amd refer to Fiz. 9 for symmetric

motion of B' and Fig. 11 for antisymmetric motion of Bg .
5.4.2 Symmetric ™ode of B8

F

Figure 9 shows the set of |r;| curves for the symmetric mnode of




RREURRWTS 2l I

motion of Bg . The zeroes of these curves are tabulated in Tadble 5.
For the symmetric motion of By the vehicle normal modes are th2 sane as
the hybrid modes 'i (8,7 ), and hence the zeroes of the | fg | curves
indicate that the corresponding hybrid modes are uncontrollable at those
locations. On2 feature that is Jiffarent from the force actuator cas2
is that the two curves, II'L‘.I ani I\"c,l are zero over the entire rigid
body ramje of locations, which indicates the appeniaje modes 'l‘ ' 1,_

are uncontrollable with a torque actuator locaved in the rigid boly B .
The & moda is controllable. As before, it is to be rememberel that the
symetric motion of Bg (Fig. $5) produces only translatory motion of
Bg + hence a torqua on By is useless in killing the motion of Bg . At
the lozations on Bg at which H‘:,_l, ll":_,l are zero the inertial slopes
ara constant for the correspondiny modes (these locations are cbtained
by putting the in=ctial angular velocity £ of an 2lement on Be equ:l
to zero). In this case, the roots of the appendajes hapmen to be sucth
locations of constant inertial slopes far both [ .| and ITes | curves.
And these locations are included in the ranje of lccations over By -
There is only one other location on B' for a zero of the lt':_l ~Jarves,
and that is for the |[¢4! curve. At the locations of constant inertial
slopes the affect of tha torque of the actuator is not felt by the
corresponding modes, and henca their shape cannot be controlled.

The behavior of these curves is more uniform than those for the
force actuator. The Il't,l curve is constant throughout the ramje of
e , SO no improvement is attained in the controllability of the @
mode. The appendage modes are uncontrollable over th2 entire rigid body

range. For locations Ir™ from the root (rg) of an appendaj. .~ to the
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crast of lr;,l (1t™ = 0.21), and beyond the zerc of | [{al (Ir* 2 0.51)
up to the tip of the appendages, the two curvas 4,1, Il",_,l increese
monotonically while the curve If“. | is unaffected. Hence, over the
ranjes r:\< Ie*| < .2t and e > 7.51, the approxinatz dejree of
controllability (" of the systam cither steadily improves or remains
constant as Ir"] increas2s. Also, the individual maximun of the twd
curves 11, lr'ul occurs at the tip of the appendages. Therefore,
f‘, if not decided by Ir..'_, |, reachas a maxiaua for the location at the
tip of th2 appendajes.

In conclusion we can stata the followinj: For the symmetric mode
of aotion of Bg , if a sinjle torque actuator is to be used For attitude
and shape control the best location for th: actuator, from L.
controllability point of view, is the tip of the appendajges rejariless
of the strenjth 2f the actuitor, the total time T allowed for control,
ani any s2t of weightinj factor-s one might wish to choose for th2 normal
modal coordinates. (The same conclusion as that for a force actuator.)

dthar salient features for the torqu2 actuator for symmetric motion
of Bg Are:

1) Bad locations in the neighborhcod of the zerses nf the
influence curves (ll':.'l curves): Sama comments as for the case
of a force actultor, in sectisn 5.3, apply.

2) Two broad distinct ranjes of Ir*l on Bg + r:< Ic*) ¢ 1.21 and
Ir‘l » 0.51: Over thase ranjes controllability of the system
either improves or remains zonstant as Ir*l inzreases. Over

theze ranjes the quality of controllability of the 8 mode

12
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(attitude) remains unaffected by <hange of location of th2
astuator, but tho Juality of controllability of th2 apmendage
modes W, , 1, (shape) improves stealily as [r™ increasas.
3) The quality of controllapility £ thr & aode (riji2 boly mode)
is zonstant for all lccations in the systaq,
4) 3hape control is not possible /- locations on the rijid body
3g -
™ese features can Ye usa2fully applied as destrived befaors (under iorze
actuator) in th2 search for other suitable lozations.
Thus, for the zase of the symmetric mode of notion of g W2 lavi
some valuable informatior o0 the quality of lozatisns | ™ in the system

even with anly the knowledje that 3 torque actustor is &t e us2i,
5.4.3 \atisyanetric %d.a of Se

Figure 11 shows the sot of IfL| curves for tt  antisymmatric mode
of wotion of Bg . The zeroes of these Zurves are tabulatel in Tadla 3,
For th: antispametric nodes of Bg the vehicle normal modes are different
fron tne hybrid modes 9, (8,71 ). But f, is similar ta the rizii body

aode 8 and § , §, are similar to the appendaje modes 'l, 1

3
[N . T‘l\.fe

aro tnres 2zaroes in all, one for {[3,1 and two for Ityt. ac e =
the systan 1is completely controllable although its dejree may h2 wvary
low. Recall that antisymmetric motion of Bp proiuces only rotary
motion of B, ani this can be killal by a torqus at Le® = 1 tharaby

2liminating the motion of Bg - Mt the locations on Bg at wiich 113,10,

i
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Iﬂ,l are zero the inarcial slopes are constant for the corresponding
normal modes (thase locatisns arz obtain2d by puttinj the inertial
anjular velocity &t of an element on Be 2qual to z2rd). At these
locations the 2ffect of the torgue is not felt by the respective modes,
and hence thay are uncontrollable.

Th2 behavior or the IQI curves is different compared to those for
the symmetric case for locations closer to the rigid body 8, . Over the
rigid boldy ranja of locations all the |f}] curves are constant
indicating no change in the degree of controllability of the system (or
the guality of controllability of any mode) is obtained by moving the
astustdr (torquer). The systen is conplelely controllable at any
location on B, . For locations beyon? the zers of Ift, I ( Ir¥l & 1.13)
up 5 tha crest of Iflsl ( Ir*l 2 0.21), 2nd beyond the secomi zero of
Iy ( 1 = 2.51) up t> the tip of th: appendages thz two curves
IR 1, Ifeal increass monotsnicaily while th2 curve 'r‘g\l is unaffectad.
Hence, aver the ranjes 9.13 ¢ Ir®) ¢ 0.21 and Ir") 2 2.51, the
approkinate degree of controllability (’. of th2 system 2ither staadily
improves or remains constant as |r"| increases The individusl maximum
of the twd curves IMia 1, If:;I occurs at the tip of the appenlages.
Therefore, (:" , if not decided by !f},|, reaches 3 maximun value for the
lozation at the tip of the appeniojes.

The conclusion here, for the antisymwnetric case, is the same as
that for the case of symmetric mode o>f motion ~f§ B, in section 5.4.2,
The tip of th2 appeniajes is the best locatisn far the actuatar for
attitude and shap: contrsl rejardless of the sctuator stremyth, total

time T and weightim factors for the normal modes.
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dther saliert features for the torquz actuator for antisymmetric

notion of Bg are:

1) Bal locations in the n2ighborhoo? of the 22roes of the
influence curvas (If% | curves). Same comments as for all the
pracading casas apnoly.

2) Two broal jistinct ranges of Ir™ on 8, 0.13 & 11 ¢ 0,21 and
Ie*l 3 7.51. Over thas: ranjas zontrollability of th2 system
2ither improves or remains constant as 1t increasas.

3) ality of controllability of all the normal modes is ~onstant
for any location on th2 rijid body 84 ( ﬁ.is sonstant for th2
systaa {or thes2 locations).

Thasa features are us2ful in the sa2arth for ather suitadble 1sTations.

Tws, nere also far th2 case of the antisymictric mode of motion of

Bg . some valuanle infornation >n tn2 quality of locatisns [r“l in  the
systea  is obtainad with anly the knowlzadje that 3 toru? ytuator is *»
be usad,

Summariziny for a sinjle torqu2 actuatdr contrsl w2 can say that

the tip of th2 appenlajes {s identifiel as the best location for

ctitude and shape zontros oz sywnetriz ani antisywmotric modes of
motion HOf Bg for this molel of a spacacrafs vAich zan anly defir in
the nanner Jescribed by th2 tw noades of RF (obtaina? from c¢v> firse
and the second cantilevor modes of the appenimes) consideredl, This
conclusior is i{ndependant of the strenjth of the acturtsr to he used,
the total time T 1allowsd for contral, avd the wrighting faztors
prescribed for the nodes. Information on rejions of poor

controllability is useful t> check that an actuatdr is not located close

P U
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to any of then. Infornation on distinct ravjes of It where
improvement in at lcast shape control is possinle is alss very us2ful in
the search for altzaraative locations., For the symetric cas2, sIm2
understanding of the quality 2f controllability is Jzsin2d for the rigid
body 032 8 an?! the apareniaj: nodes (N 1‘ T2 inforaztion for Hoth
the symmetris and antisymetric modes of motion of 3, takan togjether
proszides 3 bett:r understanding of the systea controllshility, and
identifias certain narrow ranjes for lozations 1t thae will be
suitable as alternatives for the torque actultsr in order to 2ffectively
control both attitude anl shape in both types »f motion of Be.

Ther? is a strikiny diffaronce betwean the Sorse actuator sontrol
an:l  the torgue asturtar ocontral. Unlike tuz case of €oroe atturtor
cantral, in torgue actustar control thare is 2012 node, a tyme of rigiq
body aode (attitude  in the c2se of symn2tric mwtion), whos2 juality
*

of conteolliasnilicy is anuffactod far 2ny losation I in thr systa2n

(1l f:‘ ! is constant).




5.5 Summary for a Sinjle Actuator

For a sinjle actuator, [lowc2 typ2 or torqur ctyp2, 2 Jained
valuable insijht into the guality of locations le™ with tespast t7 the
aporoxinate Jdeyree 2f zontrollability (~"' 5f tha systan, T2 +a~rjor
finliny was that the tip of the appendmes is unconlitionally the “est
location from t2 point of view of attitude and shape control for cither
typ2 of actuator. In other wirlds, for our flecible systan therz exists
no sther location Ir™ in the system at wiich an actuatar of either type
and of any strenjth will jive a better controllability over any periad
of tine T for 2ny type of (syanetric or antisymmetris) motion of 3¢
under any arbitrary weighting of the acdes. This is 3 very jeneral
resuls. Baesilz2s this conclusion, we also obs2rved other sijnifizant
feateres in tha 2analysis for a sinjle actu2tor. Onz of thas: was the
d2termination of bald lozations for actuators. T2 osthar wAs $HM2
distinct ranjyes of locations 1™, over whizh *he Jejre2 of
sontrollability of th: systan inproves stealily as Ic*®! increases,
neaniny  the guality of contral of all the ux improves. Ower other
ranjas the quality of shap» contral definitely ianravas as 1™
increzsaes but the degrez Of contrallanility of the syst2a never
dcterioratas acininy th> quality of control of the type of rijid bady
moi2 renains constant. Th2s: faatures on the Juality »f 1a23tions 1™

are extrenely usoful in s2arching for alternative locztisns that will

3ive reasonndly jood controall-oililty for tae systan,
3 y
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weighting factors. Let us denat2 th2 parpnthetice]

(5.5~1) as

5.5 4ultiple Actuators

In section 5.3 and 5.4 w2 anzlyzed the situation in vhich 2 sinjgle

aztuator is wus2d. The analysis orovidad us with very valuable insight
into the behavior of the approvimate 3ejree of controllanility P"
rhe location |+™  of the actuatsr is varied in ths systan. 2 will

m« study the situation in which qadre than on2 actustor is ase2d, Th2

ain is merely to extrast g3uide lines for preliminary design of

distribuzion pattarns for th2 actuators.

As ia (D.3~1) and (5.4-1) th2 nmHrmsl distinnes ’iJ- sAan be written as

;L ZRFJl““rZ hc;lca‘)

jed

i, .o (7_ Res | F,|+zkc, 1)
d; = ¢ (Z}kpjl l*‘ chal l)
d4 s Cq ( ZhFa‘ﬁFJ*' Z.h“ Cz‘)

Cs LZ lm'r‘n' *’ch»’ﬂ l)
% (,Zkf-il Fal“'zhd‘ c3 \)
o i6C

2
v
"

.

(5.5-1)

whare as oufore &, S, reeesS, are constints jepending on T and the

1 expressions in

e

}SF

L3



P A

M ¢ pm——

r‘: = %&Fi \ r::': \ *éckﬁi ‘ rlg ‘ (5.5-2)

® .
Obeerve that each teram of l"k is nonnejyative and represents an
independent contribution of an actuator to th2 normol distances ~13 .

*  then 311

Suppose all H‘;“I curves increase fron l'r:t o v,
the d; increase simultansously wh2n a force actuatdr is moved frim
I""I =) I~r:| . Oontinuiny in this manner w2 plac2 on2 foroe
actuator at the best possible location L,. ‘ote that our system is 3
sontinuum, but actuatars are Jdiscrete and ozcupy only  distrate
locations. H2ace, our analysis may sujjest placing actuatdrs at the
sane locations. From physical considerations we will assume that only
on2 actuator will be placed at any location. This would mean spreaiing
the attuators as a chain. Ajain from practical considorations we will
assaae tn2y are separatad by some arbitrary distance, and hence discrate
locations in a continuwus ranje will be taken in this context, Now,
consider the secom force actuator and place it at the2 s2cond best
location Lz' anl so on, whare these discret2 locations are to be
interpretad in the contaxkt described abovse. Thus, for cach astuator we
use tn2 analysis of a sinjle actuator case, which amounts %o ranking tha
locations I¥" in descending order of quality for a sinjle force
actuator. Now, fill thes2 locations with the force actuators. It s
reasonadble to distribute th2 actuators as evenly as Dossible between the
two appendajes (there is always a piic of locations, osne 91 2ach

appendage corresponding to any v ). 2 other important ohsarvatijon

should be made rejarding which forse actuator should ocoipy which




VA T N

lozation. From (5.5-2) it can be seen that if we place ths stromgest
actuator at th2 Dest locatioan the contridbution to the d; is further
. . - 'y & 3

increased. Thus, if over arangeof Iv | , vl g Iv g h':l , 211
the 11‘;,1 curves increase monotonizally, and we rank oossible

lozsations L. ., L

a?t ccer L in descendiny order of Juality then the

P

~ - P 3
abtJa\-ors k‘. F ‘Ft'ooiol kpr

should be placad at Ll, L;,..... 11, '
respectively, wnere Kn > kn) cvee k‘.’ .

®ep2at this wiole process indegendently £or thz torgua actuators
usinjy tne IQ,‘I curves for the case of a single torque actuatrr. Note
that for this case th2 ll"c,l curve is constant throujhout, and hence
can e ignorad in rankinjy the locatisns assuning that wo are intercstad
in controlliny botn attitude ani shape. Th2 other two IF‘“I curves
c3n increase monotonically over certain ranjes of f¥"! . As in the
casze of force actuators, tha torgu2 actuitsrs should be place? such that
th? 3trenjta of an aTtuscor TSorresoonids to thr quality of its location
in thz set of rankad locations (the stronjest actuatsar 2t tha best
possidle location).

Jere we have analyzed the sets of forc2 anl torque actuators
inlepandantly, It i3 possible that this could ask us to plate a force
attuator 3nd a torqu2 actuatdr at the sane location. As 2xplainsd
earli2r th2 actuators could be separatzi hy son2 arbitrary listanse s
i3t adjustnents <an be made to accomnxlate an actuitor from 2ash jroup.

Since we have used the analysis for a sinjle actuator case t5 stuly
ths wultiple actuator <ase the mathod osutlir .1 here is apalicahle ty all
types of motion 2f th2 flexible Dody Bg that are consiierad fou the

simle actuator case. To consider both symetric and antisymmetric
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motion of By it is only nacessary to take the appropriate ramjes of
l'r.l from the single actuator case. In this multiplz actuator cass we
have been <zconcarnad only with the ranjes of l**l  over wich the lr‘!
curves exhibit monotonic behavior. In sther ranjes of lv* the actual
behavior of f‘ i3 not apparent, and actual computation of (" hecomas
essential includiny the now important influence of th2 weightiny factors
(and the time T, if nonlinear). Th2 locations close to the tip of the
appendages are definitely superior in tarms of the resulting Adegree of
controllability for a spacecraft whose flexible body motisn is
restricted to th2 two appendaje modes considered. Finally, it must be
wentioned that the systan becomas uncontrallanle anly if all the forcze
actuators are located at the zeroes of a siajle H*“s curve and all
the torque actuiatdrs are located at the 22roes of the sorresponding
IQ"I curve, wnish will mz .2 a pair of 4; eguil to zero.
In the approach w2 hav outlined for obtaininy suitable lozations
for tha case of multiple actuators th2 followiny are the main steps:
1) Considsr the force actuators and torqua astuatdrs separately.
2) VJsa the corresponding single actuator analysis independently
for each type of actuators. Correspondiny to the tyme of
motion of 8p to b controlled mark out the ramjas of Eal
over wiich the IT'. curves exhibit monotanic behaviar,
3) In these ranjes of lv®l rank locations in desceniing order of
quality. ,
4) Place the force actuators at thair corresoondiny  ranked
locations in Jdescenling order of their strenjtn. Similarly,

place the torque actuatars at their corresoonding rankad

A et ar e

P Y



Lo L

locations. In the case of conflict of locations make
adjustments to accommodate the competing actuators in any
appropriate mann=r,

We can consider this appcoach a lojzizal way to set u» preliminary
distributions for a set of jiven actuators. Further modifications ani
adjustments in the placament of actuators can be carried ou:t based on
other practical considerations. If thase considerations lead to
locations in other regiosns whare the behavior of (" is not obvisus then
computation of ('* is necessary with the inclusion of the weighting
factors and possibly time T,

L2t us now consider a two actuator casz as an 2wanple of a multiple
actuator case. Followinj the steps abose w2 can odhtain the tip of the
appendajes as the best location in the system. Since we have two
appendages the best distribution for twp actuatars is one actuator at
the tip of cach appendaje. In 9 multiple actuator case with mora than
two actuators two of them can be placed at these tips. The tip being
the bhest location should be th2 place for th2 stronjest actustor amony
the force actuators or the torque actuators.

As a remark, observe that the |[4| curves for the torquz actuators
tend to flatten near th2 tip ot the apaendajes indicating that moviny a
torque actuator near the tip does not sijnificantly aff=ct th2 behavior
of p'. This fact may be used in makinjy adjustments in th2 lucations in

case of conflicts betw2an force actuators ani torqua astuators.

J6
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5.7 Summary

The procedure was described to dJeternine the approximate dejrec of
iy & . e s e
controllability ( for a jiven distribution of aztuatars, weizhting of

the modes, and total time T. Then we proceeded further to analyse the

J

influsnce curves (| Pl curves) to jain some insight into the bghavior of
(", #iile maintaining complete freedom in the choice of thz weighting
factors and the total time T. A single force actuator and control
and a single torque actuator control were examined for both
symmetric and antisymmetric modes of motion of B . We
gained some valuable information from this analysis. One
conclusion was that the tip of the appendages is the best
location in the systum for attitude and shape control.
Thie conclusion does not depend on the time T or the weight-
ing factors. We also idantified regions near zones of the
curves, which exhibit poor degree of controllability of
the system. In all cases, there were two broad distinct
ranges of lﬂ’l over which p” behaves monotonically so that
locations |+'l can Le judged qualitatively.

Having obtained some insight into the behavior of __
for a single actuator we next examined the multiple actuator
case. We showed that we could essentially treat the multiple
actuator case as an extension of the single actuator case
provided all the 2z:tuators are of the same type., We con-
fined ourselves to some special regions of locations

in which che behavior of f' is simple. A ranking system

-
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was set up for the locations |~"|. Also, the relationship
of the strength of the actuator to its location was indi-
cated which would give a higher degree of controllability.
We extended the analysis to include systems which have
multiple actuators of both force and torque types. We
showed these could be analyzed independently for each type,
ther. adjustments in the locations of actuators made in case
of conflicts,

As an example of multiple actuator systems we
considered a two actuator system. This gave the same re-
sults as those for a single actuator located on esach appen-
dage.

Thus, essentially the analysis of a single actuator
case provides valuable information on the quality of loca-
tions |Y"| from the controllability point of view, and this
information can be used for multiple actuator systems to
obtain in a rational way some reasonably good distributicn

patterns for the actuators.

1oy
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6. SUMMARY AND CONCLUSIONS

We started with the problem of attitude ané shape
control of very large flexible spacecraft. In the last four
years a large number of potential future spacecraft projects
have been identified which require spacecraft of uiprece-
dented size, and hence unprecedented flexibility The
problem is no longer confined to the attitude control of a
rigid spacecraft, but both attitude and shape control for

the entire vehicle. In order to achieve attitude and shape

PRURPRSSI

control actuators have +o be distributed over the eatire

vehicle. How should the locations of the actuators be

A A i e b <2

chosen in order to best control the flexible vehicle? This

requires significant advances in the state of the art, and

e o SR Bty . D s

little has appeared in the literature toward this direc-
tion.

In this work we started by showing the necessity of

a concept of the degree of controllability of a system so

that it is possible to compare different distribution

patterns of actuators based on this measure. Since the
spacecraft dynamic equations can be put into the linear :
time invariant state space form after linearization abou:l

a nominal state, we considered general linear systems for

analysis. Then we conducted a search for a meaningful
definition of this concept of degree of controllability.
Several candidate definitions were scrutinized and found
unsuitable, because they did not include all the pertinent
factors such as controllability, total time, control
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effort, stability, and control objective, which will have a
bearing on the degree of controllability. Hence, a defini-
tion had ‘o be sought from fundamental physical considera-
tions. The approach led to a meaningful definition for the
deg.ee of controllability.

Having formulated this definition we sought for a good
approximation so that this is applicable to real problems
and numerically manageablie, the approximation apprcaching
the true value as the computational effort is increased.
The mathematical approach adopted, besides leading us tu
our goal, 3howed the system equations in a special form
thereby enabling us to derive some relatively simple tests
for complete controllability of the system. Thus, we
developed an algorithm for computing the degree of con-
trollability of a system.

To apply these concepts to our problem we had to
first obtain the state space form for the dynamic equations
of spacecraft motion. We analyzed a typical model of a
large flexible spacecraft and derived all relevant equations.
Then, to carry out a numerical example a specific model of
a large flexible spacecraft was examined. The effect of
actuator locations on the approximate degree of control-
lability of the system was analyzed for single and multiple
actuator distributions. The single actuator case, for
bnoth force type and torgque type, yielded valuable infor-
mation on the quality of locations in the system of
actuators with respect to the degree cf controllability.

We identified the tip of the appendages as the best
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location for a single actuator of a force type or torque
type. This is for the model described by two 2ppendage
rnodes. This conclusion is very ge :ral in “he sense that
it is independent of the time T and the weighting factors
arzgociatea with the modes. The weighting factors reflect
the relstive importance in controlling the different modes,
There wer:' other salient features of the single actuator
analysis. These include: 1) the regions of poor ccntrol-
labill.ty near the zeroes of the influence curves which
show the effect of a single actuitor location on the degree
of controllability, and 2) the regions in which the degree
of controllability either steadily improves or never
deteriorates (for torgue actuator case) as the location of
the actuatcr is changed toward t@e “ip where it reaches

its maximum.

For the multiple acruator case, it was shown that the
single actuator analysis could be applied for each actuator
separately, using the features odbtained for the single
actuator case, and mesking adjustments in cace of conflicts
for the same locations. Thus, the information obtained
from the single actuator analysis is applicable t> the mul-
tiple actuator case, and can be used to set up preliminary
distribution patterns for a chosen number and type of
actuators, Then the degree of controllability can bde
avaluated, if necessary, in case some distributi~..as involve
locations for which information is not clear from the

single actuator analysis (for thec. the weighting factcrs

o o O g IR e e SR
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and time T may ba important). Once this measure of control-
labjility is evaluated it can be decided as to which dis-
tribution is nf the highest quality (mcst desirable) from
the controllability point of view,
In this work *the following can be considered as the
rain contributions:
1) The concept of the degree of controllability--
a meaningful defirition for all linear time invariant
systens (actually the definition is applicable to
nonlinen .ysteus aleo).
2) .n a gorithm for a reasonable approximation for
the degree of controllability based on an approxi-
mate bound for the recovery region. This approxi-
mation satisfies the property that it is zero if ¢nd
only if the true degree of controllabiiity is zero.
3is algorithm is relative 'y simple from the numerical
point of view. Jsing this approximate measure various
distributions of actuators can be ranked in descend-
ing order of their desirability in a practical appli-
cation.
3) A logiccl and a very useful approach for pre-~
liminary distribution petterns for the actuators so
that a desigrer need not .ndulge in a blind search
for dome distributions to be studied.
4) Relatively simple controllability test: for all
linear time invariant systems. The minimum number
of sctustors required for complete controllability of

a syrtem ig a by-product of these tasts.

e m————— A——————— e~
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As a final remark, since the analysis for the degree
of controllability is based on linear time invariant systems
it can be applied to problems other than the spacescraft
actustor distributions. This will involve identifying a
parameter, analogous to actuator location, which will affect
the degree of controllability of a given system, Of course,

the equilibrium state must also be identified.

N |
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Data for Specific Model of a Large Flexible
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Locations of Zeroes of

Table 5.

Influence Curves for Force

Actuators
Mode of Motion of Bf
Curve | Symmetric r Antisymmetric
Location Ir | Location Ir |
IQWI 0.0 -- 0.0 cem= cee-
IQtl 0.0477 .- 0.0 0.255 cne-
H},l 0.0376 |0.8166 | 0.0 0.0545 0.815
Table 6.

Locations of Zeroes of Influence Curves for Jorque

Actuators
Mode of Motion of BFf
Curve Symmetric Ant isymmetric
Location Ir ! Location Ir |
L S R R
* ¢

Me! | O=ir®tgr, | --ee- 0.127 | -----
lea! [ O Ir*1gr c.505 0.0375 0.505

¥ This is over the entire range of Bg.
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Fig. 1. The recovery region and its rectangular approximation

RECOVERY
REGION

Fia. 2. Parallelogram bound on the recovery region



e RECOVERY REGION BOUNDARY
APPROXIMATING BOUNDARY

Fig. 3. lmproving the approximation to the recoverv region



Lt

. g;:_’);f.:!:j .- -0

W

[

Fig. 4 A Typical Planar Mot ion Model of a

Large Flexihle Spacecraft

Fig. 5 A Specific Mode! of a Very Large

Flexible Spacecraft
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Fig. 6 Spacecraft in Symmetric Mode of

Motion of Flexible Appendages

fig. 7 Spacecraft in Antisymmetric Mode

of Motion of Flexible Appendages
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8. APPENDICES
A. Matrix Algebra

(i) By repeated postmultiplication of p~'APwJ in (2.4-1) by p'a

on the left side and JP~ on the right side it follows directly that

P“A"‘.-. ‘T“ P-\ (A —1)
L P

(ii) The exponential of any matrix -Rt can be written as

Tt o33
e e E-rE+ R%-R%,..... (A=2)

-. .
Suppose R=A, then premultiply both sides by P  to obtain

-\ 3,2
Pe At P-PA'E-\-PA'E P A f .

[e-7t+7 L. 7 ’f’ .]P

e-J't' P-l (A -3)

where (A-l) has been used for each term on the right side to obtain the

series in J in the paranthesis (this is obtained from (A-2)
bv substituting R=J),

(ii1) From (2.4~1) we can inmediately write

*‘ OL:..,[II.‘) TL‘() Tt TV-‘]

“.o} "1’0"’
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where J°=E , the it matrix. Substitution of this on the right side

of (A-2) for RaJ for all powers of « , leads to

-7

e = ds‘aa E e -TIE

t
e . - .
) )

- T'*_-] (A-4)

where J_ are the Jordan blocks of order \’K .

(iv) The matrix Jy can be written as
A

where E K

matrix of index v, as shown below.

is the unit matrix of order ‘)n , and ﬁk is a nilpotent

- .
o 1 o © ©.-..0
c o | O o .--.-0
A ‘ 0
Pw = e © v o - --
) L (Aa-5)
' v 1y . ¢ '
o © o oo o |
o oo © O
L 2 © .
(a-¢)

a9
Nk *2o]

A
Because )kEk and N_ are commtative e‘T“t can be written as

-7k

A A
e _ e-(A‘Ek*’NK){ _}‘Ekt —th

s € e

(A-1)

Expanding e-)ke"{: by using (A-2) (R= 2,6 ) we obtain the result
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Substituting this in (A-7), we have

T At =Nk -
ekt-ehe“ (A‘l)

A
&jain, by substituting R= Ny in (A-2) and using (A-6) we get

'S \"“ Ju-‘
L S 3.3 WL
e"N“E- EK";‘\QE'*;“nE.-;“kS-*'“*NK (-"'t)
b 3l ("n"’)!
(A-“’)

The powers of l‘vk are easily evaluated by shifting the superdiagonal in

A . .
(A-5). Hence, by expansion of N: ) X=l, 23

...,\Jk-l, in (A-10), and adding up all the terms we obtain for e Nie

the following form:

.
o I R SN
e~ ol ey
L J;‘z
o 1 -t - =4
' (")‘“)!
o o ! -t e’
SR ¢
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ABSTRACT

The unsolved problem of how to control the attitude and shape of future
very large flexible satellite structures represents a challenging problem
for modern control theory. One aspect of this problem is the question of
how to choose the number and locations throughout the spacecraft of the
contrcl system actuators. Starting from basic physical consideratioms,
this paper develops a concept of the degree of controllability of a con-
trol system, and then develops numerical methods to generate approximate
values of the degree of controllability for any spacecraft. These results
offer the control system designer a tool which allows him to rank the
effectiveness of alternative actuator distributions, and hence to choose
the actuator locations on a rational basis. The degree of controllability
is shown to take a particularly simple form when the satellite dynamics
equations are in modal form. Examples are provided to iliustrate the use
of the concept on a simple flexible spacecraft,

INTRODUCTION

In the last few years a large number of potential future satellite pro-
jects have been identified which require spacecraft of unprecedented size,
and hence unprecedented flexibility. The attitude control problem for
such a spacecraft is best characterized as simultaneous pointing control
and shape control of the vehicle. In order to achieve shape control, or
equivalently control of the various modes of oscillation of the flexible
structure, it will be necessary to distribute actuators throughout the

1This rescarch was supported by NASA Contract NAS 8-32212 with the
NASA Marshall Space Flight Center.
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vehicle. How should the number and locations of actuators be chosei in
order to best control the flexible spacecraft?

This problem has been recognized for some time, but to date little has
appeared in the literature that would help guide the control system de-
signer in placing the actuators. Most of the known results identify the
minimum number of actuators needed for a given set of modes to be con-
trolled, and identify certain specific actuator locations which cannot be
used because they result in an uncontrollable system.

The concept of controllability in modern control theory is a binary
concept, either a system is controllable or it is uncontrollable. Start-
ing from a set of actuator locations which produce an uncontrollable sys-
tem, but for which the number of actuators is sufficicnt to produce con-
trollability, it will usually be the case that moving one of the actuators
by a distance €> 0 can produce a controllable system, no matter how swmall
the €. One expects that for a small €, even though technically the
system is controllable, in some sense it will not be very controllable.

A precise definition of this concept would prove useful for actuator
placement.

It is the purpose of this paper to generate, starting from basic physi-
cal considerations, a definition of the degree of controllability. The
definition obtained is certainly not the only possible definitionm, but it
does have the advantage over a definition based on singular value decompo-
sition that the physical reality of actuator saturation limitations is
included in a fundamental way, and that time limitations on accomplishing
one's control objective can be included.

The definition is then applied to the actuator placement problem for
flexible spacecraft. With this tool the control system designe: can rank
the desirability of various candidate actuator distributions, and thus he
would have a rational way of picking which distribution to use.

DEFINITION OF THE DEGREE OF CONTROLLABILITY

Let us consider any general linear time invariant system in state var-

iable form

n o I*(t) = Az*(t) + Bu*(t) (1)
where x* ¢ R* and u*¢ R . It should be noted that although we focus our
attention on this system, the degree of controllability definition which
we adopt is also applicable to more general systems of the form
r*(t)=f(x*,u*,t) having a solution z*(t)30 (£(0,0,t)=0).

It is instructive to discuss some of the candidate definitions of the
degree of controllability which were considered and discarded--the process
of starting with a blind attempt at a definition and progressing to a well
formulated concept highlights the characteristics that a workabhle defini-
tion must have. It is tempting to try to connect the degree of controlla-
bility to properties of the standard controllability matrix
Q= [B AB ... A""13], and define degree of controllability as the square
root of the minimum eigenvalue of QQT. Four apparent difficulties with
this definitfon must somehow be handled before the definition besomes
viable. These difficulties are as follows: 1) The degree of controlla-
bility is affected by a transformation of coordinates (since the eigen-
values of QQT zre not invariant under changes in state variable representa-
tion). 2) This candidate definition satisfies the basic requirement that

C v
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DEGREE OF CONTROLLABILITY (g4

the degree of controllability is zero when the system is uncontrollable,
but it is not immediately clear what other ghysical meaning can be at-
tached to the size of the eigenvalues of QQ!. 3) The candidate defini-
tion does not involve a dependence on the amount of time T allotted to
accomplish the control task. It can be much easier to control the system
state in some directions in the state space at one time than at another
time, so the degree of controllability should depend on T. 4) It is not
clear that the amount of control effort needed to accomplish the control
task is reflected in this definition. In the satellite described above
where one actuator has been moved by a small amount € to produce control-
lability, one expects the "weak controllability" of the system to be mani-
fested in the need for very large control actions to accomplish certain
small changes in the state, and hence the control effort required is of
fundamental importance in making a definition.

It is clear that some type of limitation or standardization of the con-
trol effort must be included in the definition. Consider a standardiza-
tion which restricts the control to a unit impulse, and consider systems
with A in diagonal form and with u* a scalar. For distinct eigenvalues
the system is controllable if none of the elements b; of the column matrix
B are zero. Furthermore, these components indicate how far a unit impulse
control will move each state component instantaneously, so one might sug-
gest the minlbi] as a degree of controllability. Here we are trying to
generalize’h second standard test for controllability to obtain a degree
of controllability definition. Among the apparent difficulties with this
candidate definition is the fact that the control actions are so re-
stricted that the components of the state cannot be affected indepen-
dently. The control of all states by a single control u* relies on the
differences in the dynamic behaviors of the states.

Both of these candidate definitions have difficulties; they do not
appear to include the effects of all pertinent variables. Hence, it will
be necegsary to build the definition from more fundamental considerations.
Ironically, when this 1s completed and interpreted properly, in certain
special cases the degree of controllability definition will essentially
reduce to the second candidate definition above (and by employing a diffe-
rent approach involving singular value decomposition of matrices something
of the general form of the first candidate definition can result).

It is now evident that the definition of the degree of controllability,
besides being in some sense a measure of how easy it is for the controller
to control the system, must in some way handle four things:

1) It must have the property that the degree of controliability is ;

zero when the system is uncontrollable. ’

2) 1t must somehow consider dependence on total time T.

3) It must standardize the control effort in some way.

4) The control objective must be restricted. -
Concerning the last point, certainly different control objectives should
influence the choice of the control system design, and hence the degree of
controllability of a candidate design should be keyed to the objective
involved. In a large class of problems (regulator problems), the equili-
brium solution x*=0 to equation (1) is of primary impc:tance, and the
control objective is to return x* to zero after a disturbance. Since this
is the most common attitude and shape control problem for flexible space-
craft, we will restrict ourselves to this objective. A companion



VISWANATHAN, LONCMAN, AND LIKINS \o

paper [1] develops the concept of the degree of controllability for var-
ious satellite slew maneuver objectives. Concerning the standardization
of the control effort we will require that the control components satisfy
Iu{ls 1 for 7=1,2,3,...,m, which represents realistic physical limita-
tions of the actuator capabilities. Note that the use of one as the
bound for all control components implies normalizing each component of u#*
to produce a new control vector u, and adjusting the B matrix to produce
a new matrix B.

Controllability requires the existence of a control function which can
transfer any initial state to any final state in finite time. With our
more limited control objective, the degree of controllability sho.ld be
related to the volume of initial system states (or states resulting from
disturbances) which can be returned to the desired state x*=0 in time T
using the bounded controls. Consider the nature of this volume in mnre
detail. In an uncontrollable system there will be at least one direction
in the state space for which initial conditions in this direction cannot
be returned to the origin, and the volume will lose one or more dimen-
sions. For a controllable system whose parameters are such that it 1is
nearly uncontrollable, only initial conditions very close to x*=0 along
the above mentioned direction could be returned to the origin in time T
using the bounded controls. Hence, we will generate a definition of the
degree of controllability based on the minimum distance from the origin to
a normalized state that cannot be brought to the origin in t.ime T. More
loosely it is the minimum disturbance from which the system cannot recover
in time T.

The coordinates of a state space will very rarely all have the same
physical units, and hence it is clear that comparing distances in the
state space will require that each coordinate must be made unitless by
normalization, How should one choose the normalization to use? Recognize
that when comparing two controller designs for controlling the same dyna-
mic system, the needed minimum distance for each design will usually cor-
respond to a different direction in state space. Hence, ranking of the
degree of controllability of the two systems will depend on comparison of
distances in different directions, and this implies that we must be
equally interested in controlling deviations of the state from x*=0 in all
directions in the state space. In order to accomplish this the control
system designer must specify n-1 numbers which represent his degree of
interest in controlling each component of the state. This could be done,
for example, by determining the deviations of ok, 2N yo o XR_1 which
would be considered of equal importance to a deviation of xp*=1. The
reciprocals of these numbers would then be used to produce normalization
factors for each of the coordinates of the state space giving a new state
vector r. The system equations expressed in terms of the normalized state
x and normalized control u are then written as

z(t) = Ar(t) + Bu(t) (2)
lu;] €1 i=1,2,3,...,n

Just as in optimal control theory where the control system designer
must be specific about his goal by specifying a cost functional, in order
to define the degree of controllability, it is necessary to be fully spe-
cific not only about the objective of keeping x=0, but also about the rel-
ative importance of keeping each component of x near zero.

Relative to the normalized system (2) we are now ready to make the
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following definitions:
Definition 1: The recovery region for time T for normalized system
(2) is the set
A= {2(0)}3u(t), t ¢[0,T], |u (t)|S 1 for
i=1,2,...,m 3 2(T)=0}
Definition 2: The degree of controllability in time T of the zr=0 solu-
tion of normalized system (2) is da2fined as
p = inf|] z(0) || v z2(0) f R
where || *|| represents the Euclidian norm.
Thus, the recovery region identifies all of the initial conditions (or
disturbed states) which can be returned to the origin in time T using the
bounded controls. And the degree of controllability is a scalar measure
of the size of the region, where the scalar is chosen as the shortest dis-
tance from the origin to an initial state which cannot be returned to the
origin in time T.

The degree of controllability, as defined, is keyed to the state vector
x employed. No transformations of coordinates can be allowed once the
normalization has been specified (unless the norm used in the definition
is adjusted to compensate for the resulting distortion of the state space).

Note the following property of the recovery region:

Remark: The recovery region R for system (2) is the same as the set of

reachable states for time T for the system
z(t) = -Ar(t)-Bu(t) ¢t ¢[0,T]
lu.]s 1 i=1,2,3,...,m
starting from x?O)-O.

It should be pointed out that although Definition 2 incorporates all
the properties which were identified as necessary in the definition of the
degree of controllability, it is not necessarily unique in doing so. For
example, a standardization of the control effort in terms of energy can
also be employed, but the inequality saturation constraints on the con-
trols used nere represents the more rea.istic situation.

An example section is provided in this paper in order to illustrate how
the degree of controllability behaves as a function of actuator placement
in a simple flexible spacecraft, and to demonstrate that the definition
behaves according to our limited intuitive notion of the degree of con-
trollabilicy.

CONCEPTS FOR APPROXIMATING THE RECOVERY REGION

In order to make the definition of the degree of controllability use-
ful, it is necessary to develop a simple algorithm to generate at least
an approximation to the distance p. This necessitates approximating the
recovery region R .

Note that T

2(T) = 9(T,00z(0) + o(7,0) [6(0, t)Bu(e)dt 3)

where @ is the state transition matrix for (2). The distance moved during
time T is £=x(0)~x(T), and we are concerned with sending the system to the
origin so that x(T)=0. Then the initial state £ which reaches the origin
in time T using control u(t) is given by

- = [ 4(0,t)Bu(t)de 4)
By the Caley-Hamilton theorem the state ransitian matrix can be written as
8(0,8) = eAF = %y ()N (5)

I et

o teabns



n v MRy ey

VISWANATHAN, LONGMAN, AND LIKINS v

where the ¥ _ are scalar functions of time. Partition the B matrix into
column matr?ces bj, and define the following matrices

B.[b) ba by ... bll] (6?
wEm [4y ¥ ¥, .o wq_ll (7
Q=1[BABA%B ... A3 ] i)

Qg = [ bg Abg Ahg ... An-lba ] 9

Then £ can be represented in the following altetpative forms

- T o
-E= g ; { lwa(t)"ﬂ(:)dt } A bB (10}

m T
n~1l
.;1 ./; [babgh,Abg+ ..+ _ A" TboTugdt (11)

m T
- ; '/0- [de]usdt (12)
1

For the purposes of illustrating certain concegpts, let us restrict our-
selves to the case of a scalar control so that the summations over 8 as
well as the B subseripts in the above can be dropped, and B is a column
matrix b. Also let n=2 for simplicity. Suppose the recovery region is as
shown by Region I in Fig. 1. The maximum x, component cf any state in the
recovery region is obtained by using the control u equal to minus the
signum function of the first component of the vector [Q¥] ia {12), since
this maximizes the x, componernt of the integrand at each %ime t. The
right hand side (and left hand side) of the rectangle erzlosing this re-
covery region in Fig. 1 can thus be found by integrating the first compo-
nent in (12) using this control. If desired the point at which the recov-
ery region touches this side is obtained by integrating the second compo-
nent of (12) using this control. The top and bottom of the rectangle are
found similarly.

The rectangle obtained in this manner might be considered an approxima-
tion to the recovery region, and then the shortest distance from the origin
to one of the sides might be considered an approximation, p, to the degree
of coantrollability, p=p.. Note that this necessarily produces a § which
is an upper bound for tﬁe degree of controllability, In some cases his
approximation is a tight one, but often it is not. Suppose the recovery
region was Region II of Fig. 1. This corresponds to a system which has a
much poorer degree of controllability, rc=p.,, yet the approximation §
remains the same. In fact, suppose that p,. +0 in such a way that Region II
degenerates to a line forming a diagonal oEIthe rectangle in Fig. 1. Then
the system is an uncontrollable system, but the approximation § still pre-
dicts a good degree of controllability. Hence, this approximation must be
rejected.

For the case of a scalar control being considered, this shortcoming can
be elim&na:ed by using ~§ as expressed in (10) and maximizing components
along A"b. The control

u(t) = -sga(y,(t)] (13)

extremizes the coefficient of the vector A?b in (3).. It will simultaneous-

ly produce some components al~ng the other vectors A'b for YyAda. This is
a maximization of acomponent % the vector g bdut it is a component as seen
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in a nonorthogonal set of coordinates. Hence, the upper bounds obtained in
the various directions define a parallelogram (more generally an n dimensional
parallelop!ped) which can be considered as an approximation to the recov-
ery region, as shown in Fig. 2. As before there is some point on each

side of the parallelogram which is in the recovery region, but no point
outside the parallelogram is in the region.

The minimum distance to a side of the parallelogram, i.e. the minimum
perpendicular distance to a side, is an approximation p* to the degree of
controliability, p. When the system becomes uncontrollable, the columns
of Q bacome linearly dependent, and hence the perpendicular distance to
one of the sides becomes zero. This means that this p* has the essential
property that p*=0 whenever p=0.

We conclude that for the scalar control case we have a viable method
of approrimating the degree of controllability. A simple method will be
presented in a later section to determine the needed minimum perpendicular
distance.

This approximation is still an upper bound, and it can be improved, in
fact made arbitrarily good, by considering more directions in the state
space. Let e be any desired unit vector expressed as a column matrix of
components. By examining (12) the state in the recovery region having
a maximum component along the direction,e is obtained usirg the control

u = -sgnfe Qv] (14)
and hence no points in the recovery region lie beyond the line perpendicu-
lar to e and a distance T

|e w|de (15)

from the origin (but at least one point in the recovery region lies on

the line). Figure 3 illustrates how use of three e’s (e , €, and eypy )
identifies three tangents to the recovery region, and when tgaen together
they begin to approximate the region boundary. Let f ie the minimum

value of (}9 for any set of directions e considered. Then an improved
estimate of the degree of contreollability is p**=min(p*,8), and p**>c can
be made arbitrarily close to the true degree of controllability o oy
picking a sufficient number of directions e. This method of improving the
approximation to the degree of controllability will also be generalized to
the multiple control case.

FUNDAMENTAL EQUATION FOR RECOVERY REGION APPROXIMATION
IN THE MULTIPLE CONTROL CASE

The previous section presented a procedure for generating an approxi-
mation Pp** to the degree of controllability p in the case of a scalar
control u. The procedure required the use of n carefully chosen direc-
tions in the state space, 2,Ab,...,A" 'b, in the anproximation to the
recovery region in order to insure that p** had the property that p**=0 if
and only if the system is uncontrollable. If the control vector is m dim-
ensional with m>1 it is no longer obvious how to obtain this property,
since the columns of the Q matrix necessarily contain linearly dependent
vectors. Tnstead, we will consider the e.genvectors and generalized
eigenvectors of the A matrix of (2) as the n linearly independent direc-
tions in the state space. Certainly some modifications must apply when
these vectors are complex. In the single control case the value of p**
became zero when the system became uncontrollable because linear depen-
dence of the vectors b Ab,....A“' b implies the collapse of at least one

~~
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dimension of the p3rallelopiped. The vectors chosen herz {or the
multiiimensional control case do not exhibit ivhis reduction. Neverthe-

less, it will be shown in tle next section chat the desired property of
the reculting p** can be demonstrated under fairly general assumptions.
This section is devoted to generating the approrriate expression for &
equivalent to equations (4,10-12), expressed in terms of components in
these eigenvector directions.

Let J be the Jordan canonical form of the matri: A, ard let P be the
matrix of eigenvectors and generalized eigenvectors so that

P-laP = J (16)
J = diag(J 'Jz""’Jr)
where the J; are the square Jordan glocks of dimension u.. Associated
with each block is in eigenvalue A;, i=1,2,3,...,r, so tﬁat r<n and r is
greater than or equal t> tne number of distinct eigenvalues. Also, let
p; be the n colummns of P, and q~T be the n rows of P~} (the left eigen~
vectors and generalized left eigenvectors).

The desired fundamental equation for £ is given in the following theo-
rem. The theorem is made significantly more complicated in order to
handle repeated roots, but it is necessary to treat such roots since the
rigid body modes for any spacecraft involve double roots.

Theorem 1: The displacement £ = r(0)-z(T) after time T of the svystem

state for equation (2) resulting from control u(t), t e [0,T],

can be written as .

-E= T3 [ W psee (7
0 et
where Zj is a possibly time dependent vector
T

= - _]-‘- - 2 '—"l_-'- - ki-j
Ligt®) = aze* e1,800) Y 2 35ag,8007 P e F ETHT 2800 (1,

38 = q.TbB (20)
with b, given in (8). ihe values of k. are determined by
the dimensions of the Jordan blocks as follows

2
ko'o H Ki- z;l UZ (21)

and the values of j associated with each i=1,2,...,r are
J o= k. +1, k. 42, ..., k. (22)

The 7. are giv%n by -l ks 2
J h. - e"kit ( 3)

for 1 and j relatéd by (22).

For the special case of all distinct eigenvalues (r=n) equation (17)
simplifies significantly, since there is no need for a diatinctio? betweer
1 and J, and the components of 1. become the constants Z.B-AJB- . ba.

Then (17) becomes J J J

T A
-f = [ E e-)‘Jt(q.,' Bu)pjdt (24)
Due to space limitations the froof of this theorem is omitted, but
can be found in reference [2] or the journal version of this paper (to
appear).
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FUNDAMENTAL EQUATION IN TERMS OF REAL VALUED FUNCTIONS

Take one eigenvalue from each complex conjugate pair and assign the j
or j's associated with its eigeavector or generalized eigenvectors, p.,
to the set . Let C* represent the set of j's associated with real eigenw
values.

For any complex eigenvalue the associated p. .y and 7. in (17) will

h

»

be complex valued. Let their real and imagina%y pﬂrts be ﬁiven as folluws
together with the definitions of ¢. and n.

P; rj+is§
, = e +lg.
:J €59 _ 2
. =Y 41§, =l,2, 0o
ig Y; 6% 2 ; 2 n (25)
b= ey T 9%
T T
s W 20 o + oY o
ny = &8 * 9y
The vectors representing the semiaxes of the parallelopiped are given
by
T
(S B2loglac)e, Jec (26)
or J8 J
: . . jeC
‘o!ﬁﬂ Zlnasldt) s; § 27)
T . .
. je Ck
(! 35 |¢J.e|dt)ra jecC (28)

(Note that these results can now be applied without regard for the reor-
dering of the eigenvectors used in their derivation.)

Let this set of n vectors be denoted by v;, V5, ... , V . The minimum
perpendicular distance to a side of this parallelopiped can be used as an
approximation to the degree of controllability, and as before the approxi-
mation can be made arbitrarily tight by using distances in additional di-
rections in the state space.

Define the matrix F=[v; v, ... v_]. Each v_ vector goes from the ori-
gin, or center of the parallelopipea volume, to the center of one of its
sides. Any surface of the parallelcpiped consists of edges that are para-
llel to n~-1 of the v vectors. Let d., corresponding to v., represent the
perpendicular distance from the origin to that surface fof which no edge
is parallel to v.. Then d; is the component of V. normal to this surface.

Theorem 2: Tﬂe normal aistances d., j=1,2, ..% ,n, to the surfaces of

the n dimensional parailelopiped prescribed by F are the
reciprocals of the magnitudes ot the column vectors given
by (FT)=1,

Proof omitted due to space limitations (see [2] or journal version),

The approximation p* of the degree of contyollability p from the para-
llelopiped bound on the recovery region is

pk = min dj (29)

This approximate degree of controllability can be made arbitrarily tight
by including the recovery region bounds in other directions as well as
those of parallelopiped axes. This approximation p* will go to zero when
the system becomes uncontrollable as indicated in the following theorem.
Theorem 3: Suppose that all eigenvalues of the matrix A for system (2)

- P i il P Y I PRI ATy,
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are distinct. Then p*=0Q if and only if p=0. That is,
the approximate degree of controllability based on the
minimum perpendicular distance to the surface of the para-
llelogram F obtained from (26-28) will be zero if and only
if the system is uncontrollasble.

Proof omitted due to space limitations (see [2] or journal versionm).

SPECIALIZATION OF THE DEGREE OF CONTROLLABILITY CRITERION
TO MODAL COORDINATES

Consider a lightly damped flexible spacecraft with dynamic equations
expressed in terms of spacecraft normal modes. Temporarily consider the
shape control problem alone so that the rigid bodv mode is neglected.
Then the equations are
2, = rTe is1,2,.00,02) (30)
The I'. and u are defined so that each component of u is bounded by unity.
Let tﬁe numbers N. represent the relative importance we assigr to the
conirol of the n.'s. We must also specify the importance we assign to
the control of hi in the state space which will be generated. Since the
system is lightlv damped, if n. is sin(w;t+$), then N, will be wcos(w,t+p)
approximately, so that the relative importance of controlling A. is tegte-
sented by wi“i' Now g2nerate the state variables as follows

A A
Tazal © MfNp 5 Ty < Tpp g
so that all unit deviations from the origin of the state space will be
considered equally serious., Then

Lo 0 W, . 0
27-1 . 2 27-1 - u (31)
Z. . -, =20.Ww. T
27 i 1 Tos Pi /(Nimi)
Let the coerficient matrices be A. and B,. Then the normalized system

equation (2) has coefficient matrices A &nd B, and eigenvector matrix P,
which can be partitioned as follows

A= diag [A), Ay, ooy A )
T o T T T
B= [B1 By «e: By ]

P = diag [P, P (32)

2, see Pn/2]

-1 -1 -1 -1
P * = diag [P1 8 PYNE RPN Pn/Z |
where

P, = [ 1 1 ] : Pi-l - 1 [ i “”i]
SRR YR [ PRI TR,

Aoty = g (FEHEY1-LT) B Agp = (8-t

[l
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Using the rows of P-l and the columns of B in Zjﬂ.ajd-qubB’ gives a zero
real part (Yzi B-O). and imaginary part
]

82:,8 = Tig/ (N;uw;71-8;7)
where I':, 1s the Bt component of I'.. We wish to calculate (26) and (27)

for Jj ck@ i.e. ~r one of the compléx roots in each comr lex conjugate pair.
- " "x . t .
From (25) °2i,8 —92i62i.8’ and g,. is the imaginary part of exp| 2 ]

Then (26) becomes

T
= rgl o
[ Z —-—l—i-s—-—ec"vm"tlsin(-’l-ciz wit)ldt r,; (33)

—rZ
ger Njw71%;

For a lightly damped system the exponential will not change significantly
during one oscillation of the sine wave. Assuming that T is long ccmpared
with the period of the sine wave (so that the effect of partial completion
of the final period of oscillation of the sine wave is negligible), the
absolute value of the sine can be replaced by 2/m, its average over a
period. Then (33) becomes

e T
p T lly (& - (36)
= —tr, .
TN\ g ) B
TR
Wil & & 1l (35)

The analogous calculation for (27) gives the same result with r,. replaced

by s,.. Together these vectors form the set vl, vz, eeey V whi%h are the
columns of F, n

The r : and s, are the real and imaginary parts of the appropriate
column og P. Looﬁing only at the appropriate partition of F, call it Fi'
we have

I I S Cel. 1 |/ o
t -z, -/1-C.7 ks oJl-ciz -z -1

A A
where 0 {s the coefficient of r i in (34). The associated values.of d,
from Theorem 2 result from taki%g the magnitude of the rows of Fi and’are

glven by
d = . d = Q0 -&:_ci;
27-1 vt V1+;£

the second of which is the smaller. From (29) the approximate degree of
controllability p* is

o* = mi.-n[_?:. T ll, (eci‘“iT ; 1)] (36)
1
TN \gu /R

11

Note that when damping is preszent, the recovery region expands with T in
such a way that p* grows exponentially. Furthermore, when the natural
frequency of the minimizing mcde is decreased the approximate degree of
controllability increases.

An important special case is that of a system model hich has no

et 4 e————
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damping. The approximate degree of controllability in this case becomes

* = 2T nin lIri"A

p = ——— (37)
. T o1 N,
Note that p* increases linearly with time, making T a scale factor which
can be dropped. We conclude that the approximate degree of controllabi-
lity is simply the minimum norm (in the sense of (35)) of the rows of the
suitably normalized control coefficient matrix when the system is repre-
sented in modal form. The normalization in (37) is that applying to the
derivative of the modal coordinate n..

Now let us introduce the rigid boay mode into the problem so that the
control objective is simultaneous attitude and shape control of the
flexible vehicle., For simplicity consider only one such mode, and let the
variable involved be 6. Let the normalization representing our degree of
interest in controlling 8 be N ,and that for 0 be N:. Then define state
variables :etelNe and xételﬂé, and the equation O-Feu becomes

o 0
z 0 Né/Ne zy
[52 N ) * I‘e'r/ Ngj "

[1 0 ] 1 |-1 0 ]
P = H P =

0 Ng/Ng LO N3/,
From (20) and (19), @y =0, ago=To /Ny, Loo==(Too/No)t, L3 mTy,, and hy=he
1. Then (28) gives OB ~ 98 08778’ "88 "t 68'76""* "8 68 ™"8

and

2
ITell, T° [1] oty T[O] (38)
NG 2 0J’ Né 1

Calculating de and dé using Theorem 2 results in the coefficients of these
two vectors.

The approximate degree of controllatility p* when the rigid body mode
is included is the minimum of the p* given by (37) (or (36) when damping
is included) and the two coefficients of the vectors in (38):

2
n/] < N.w, \2 No N3

Note that because of the modal representation used in the system equations,
there is no coupling of the weighting factors N., N,, and N3 from one mode
to another. Thus, if one is not particularly interested in controlling
any specific mode, the corresponding N can be made very small. Then that
particular mode is simply neglected in the minimization to determine p*,
For example, in some applications one might feel that it is {mportant to
control the rigid body angle 6, but that if 0 is controliied well tac value

of 6 1s unimportant. In such a case one simply ignores the T1|F9“A/Né
term in (29).
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EXAMPLES

The methods of this paper were applied to an example flexible space-
craft. Due to space limitations only a few results will be cited. The
spacecraft consists of a rigid symmetric central hub with two 60 foot
radial stem typz booms. The two lowest appendage modes are used to gene-
rate two symmetric and two antisymmetric spacecraft modes. Both torque
2ad force actuators were considered. Figure 4 applies to antisymmetric
spacecraf: modes and plots the values of IIP."A/w. normalized by the
torque actuator strength. Equation (37) shows that the degree of control-
lability is caiculated by scaling each curve of Fig. 4 according to the
normalization N.and the actuator strength, and taking the minimum of these
curves at the actuator location. The optimum location for the torque
actuator is casily determined as that point which maximizes this minimum.
Any regions where one of the curves is near zero should be avoided. For
a system which truly has only two modes, and with unit normalizations, the
best torquer location is at the end of the appendage.
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9. AMNALYSIS

9.1 Introduction

In part Two, attention is focused on a component of a spacecraft
while keeping the control system design fixed. These spacecraft are so
designed that certain of their components are interchangeable with other
physically compatible components. These interchangeable components may
be designed to accomplish different tasks., These sp»cecraft can,
therefore, be called multi-purpose spacecraft.

A typical example is a Shuttle-based Instrument Pointing System
(IPS). Such a spacecraft will have a Space-Shuttle with a multi-purpose
device called the Instrument Pointing Mount (IPM) to which one of a
family of scientific instrumants is attached. The instruments are
typically lightweight and their flexibility becomes significant due to
pointing requirements. ‘The shuttle and IPM are modeled as rigid
components of the ideali’.zed system, while the instrument is modeled as a
flexible component. A control system can be specifically designed for
such an IPS with a given instrument. However, the central idea of the
IPM is to make it a multi-purpose device, so that it works not. simply
for one instrument but for a whole series of instruments, many of which
have yet to be designed. In fact, once the IPM characteristics are
defined, the scientific instruments have to be designed so that they
will function properly when attached to the IPM. This is the inverse of
the usual design problem, in which the physical plant is given and the
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control system is to be determined. Instead, here, the physical plant
is variable because of the interchangeable instrument. The approach
taken, therefore, is to predesign a comprehensive control system which
is shuttle-based, and hence remains unchanged for the spacecraft for a
whole series of instruments that might be attached to the IPM, Severe
accuracy requirements in the orientation of these shuttle-based
instruments, sometimes to within fractions of an arcsecond, may be
demanded of the control system design. And usually a dual control
system will need to be adopted with one control system located in the
shuttle, and the other in the IP4 (for fine control). In this case, the
IPM can have motion relative to the shuttle. Now, the question is "what
kind of inst':runents are stably controllable with any given control

system?" In response to this, it is best to describe these instruments

in the most general terms possible so as to allow the designer ample

freedom in their design.
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9.2 Parameter Plane Technique

This method has its origins about a century ago in the
idea of investigating the system response chracteristics [8]
by algebraic aoproach. Inawide variety of control problems

the designer is interested not only in the stability of the

system but also in the essential features of the system

behavior over time. In its original form the approach began

by treating two coefficients of a characteristic equation

as variables, and studying how the roots of the equation are
affected when these two coefficients are changed, By plotting
the characteristic curves in the plane of the variable coeffi-
cients, the method enables adjustment of these coefficients

so that the roots of the characteristic equation may be set

at any desired locations. After the curves are plotted, the

variable coefficients can be adjusted without any calculations.

Several researchers have since.tkhen extended the method and
its applications to various problems such as sensitivity
analysis of linear control systems, circuit synthesis, steady-
state response analysis, sampled-data linear systems, and to
other related problems of linear system design, Also, the
method has been successfully applied to non-linear systems,
The parameter plane technique for analysis and synthesis of
linear and nonlinear control systems is amply described in
Siljak's monograph [9] Once the system characteristic

equation has been obtained, the parameter plane method enables

.
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the designer to evaluate graphically the roots of the equation.
Hence, he may design the control system in terms of the chosen
performance criteria; e.g., absolute stability, damping ratio,
and settling time, Thus, the technique is the mapping of the
roots of the characteristic equation from the complex plane
onto what is known as a parameter plane. The design procedure
has also been simplified by Siljak who introduced Chebyshev
functions into the equations, thereby putting them in a
suitable form for digital computer simulation,

The parameter plane method requires that the control
system be described by a characteristiz equation which is
transformed into the complex domain (s-domain). Two adjustable
parameters, o, F , (which are of interest to the designer)
are selected, and the characteristic equation {essentially
its coefficients) is recast in terms of «, P . Suppose the
characteristic equation (€CE) is

n 5
= H S =0 .
cE 3% i (9.2-1)

then

F; 2 F5C0P) ) Sae e (gm0
The points in the s-plane (complex domain) are described best
suited to this method by the two system characteristic

quantities §, w, ,where § is the damping ratio (0s!Sig1)

and Oy is the undamped natural frequency, Let

S = X + | ys-jb)n+ iUnJl—f“' (9.2'3)

Any power of s can be written as

e, s e

T i e W



s a X, Y, (9.2-,
J L)
where XJ , ﬁ are the real and imaginary parts for which
there exist the following relationships
* .
Zs s—wa,. 2‘--‘—&,, ZJ-Z

Jat"z,’-:vl

X =1 ; X, = =3wy

Yo =0 Y, « wolimg" (9.2-5)
Substituting (9.2-4) in (9.2-1)
L1}
CE=2 f; (X;+ 1Y )=0 (9.2-6)
420

from which we obtain

n
Z fa' xJ = 0
330
f, Y =20 (9.2-7)
;Z- I L J

Now, the coefficients FJ may be linear or nonlinear in the
parameters o, F depending on the choice of the parameters.

Consider a linear form for the fj , 1.e., let

f‘-i = ajo( + bj P + CJ- (92_8)

where 8 b; , C; are constants, Then

242 E"(“J“ +4p+)2

HT "°

zq 2, )% +(ShZ)P + zoc,-z,-)
(9.2-9)

in which Zj = Xj or YJ . ' we define

J

28
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n n
A3 a;x; , B= 2 BX ;e g% (9010

Jao vao iz 0
and simitarly, A’ , 8", ¢” for Y; , then from (9.2-9)
A + Bf+ C =0
Alac+ BB+ C =0 (9.2-11)
The coefficients A, B, C etc. are determined if §and w, are

"
chosen. These two equations can then be solied for & and g

if their discriminant is nonzero.

In a similar fashion, two equations nonlinear in & and P
can be obtained if f; are nonlinear functions in «, g .
in this case, therv will be muitiple images in the parameter
plane corresponding to a root in the complex plane defined
by 1§, Wy -

The characteristic curves in the parameter plane are plotted
for various values of J and W, . These curves are called
§-CUrves and &%-Curves, because a set of curves can be
plotted, each curve corresponding to a fixed value of § (orew,)
and the other quantity @, (or § ) varying along the curve.
Similar curves are plotted for real! roots € of the Zt. For
real roots one of the equations (connected with the imaginary
part Y, ) in (9.2-11) vanishes, and for various values of €

we obtain the 0 -lines in the parameter plane. Having plotted
these curves one can read the roots of the CE corresponding
to any point in the & -P plane. Generally, these curves

are shaded to help relate the crossing of these curves in the
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parameter plane to crossing of the axes in the complex plane.
The details on the shading convention adopted for the pérameter
plane curves can be found in Siljak's monograph [9].

One of the most important regions in the parameter plane
is the unstable region which the designer must avoid in
designing the system, But, though stability is necessary in
2 wide variety of contro! problems it is not sufficient, and
the designer might be interested in other features of the system
behavior, The parameter plane can be used in several ways as
one wishes to study the system response. Thus, for instance,
a designer might want tc keep $>0.2 for all the roots of
the equation, and a similar restriction on o, . Depending on
his requirements he can mark out the regions of interest and
adjust his parameters o ,f3 to obtain best performance for
the system,

The following are the main steps in the application of
the parameter plane technique:

1) Obtain the characteristic equation (CE) for
the system in the s-domain, i.e., i f,‘ s" = 0,

2) Identify two parameters of interes»t“o(. f’ and
recast the coefficients Q of the CE in terms
of o, P .

3) Use the substitution s - Xo o Y, and obtain
n

two algebraic equations, :i f. X, = 0, and

0
z f,Y, = 0.
80
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Using the recursive relationships from (9.2-5)

for Xj , ti in terms of 4, @y

two algebraic equations for & , F for various

solve the

values of § , w,

Plot the §-curves or W -curves in the parameter

plane ( 0(-? plane).

For real roots use the CE with s=0 , and for

various values of & plot the @-lines in the
& - F plane.

Having plotted these curves mark the unstable

regions in the parameter plane, and use the

shading convention,

In the next chapter we will study the flexibility

characteristics of the shuttle-based instrument of a multi-

purpose spacecraft applying the parameter plane analysis,

%
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10. ANALYSIS OF A SHUTTLE-BASED INSTRUMENT POINTING
SYSTEM OF A MULTI-PURPOSE SPACECRAFT

10.1 Introduction

The parameter plane analysis has been applied to study
stability of attitude control of spinning skylab ['_10], [l 1],
and recently Seltzer and Shelton [12] applied the analysis
to study the rigidity of spacecraft flexible appendages for
a twe-body model, a rigid body and a flexible instrument,
with a spacecraft attitude controller of a standard position-
inteqral-derivative (PID) state feed back type.

In the present work we w il analyze a three-body system,
a rigid shuttle, a rigid instrument pointing mount (IPM) and
a flexible instrument, There will be two PID controllers, one
shuttle-based and the other [PM-based. 0Once the equations are
derived two cases will be examined: 1) the IPM is locked to
the shuttle and only the shuttle-based ;ID controller is in
operation, thus reducing this system essentially to a two-body
system, and 2) the IPM is allowed to have motion relative to
the shuttle with its P!D controller also in operation, which
is a three-body system, The model of the two-body system here

differs from the model in [12] in its feed back control law,
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10.2 Planar Model

Figure 12 shows a typical planar model of a three-body
system in which Bg, is the rigid shuttle, Bg, is the rigid
IPM and B, is the flexible instrument whose characteristics
are of interest to us. The system is inertially at rest and
the rotational dynamics is assumed to be confined to a single
plane of motion with controf torques appiied in this plane.
Two attitude controllers of the proportional-integrai-differe-
ntial (PID) type are assumed, one located in the shuttle (Bgy)
and the other in the IPM (By, ). The shuttle-based controller
applies torque 7; to 34, and is meant for large attitude
control, and the IPM-based controller applies an interaction
torque, T,

2
of the instrument. The inertial attitude of Ba, is denoted by

to Bgl and -7; to Bk\ , and is meant for finer control

C)iand the relative rotation of Bg, with respect to Bry 18
denoted by (:g. The flexible appendage is assumed to be an
elastic beam and is characterized by distributed coordinates,
and the hybrid coordinate approach [5] is used. In the
stability analysis the appendage is characterized by a single

assumed mode,



10.3 Dynamics

The kinetic energy of the system is derived in a similar
¢ manner as in part I, but is more involved due to the relative

~; motion of Bey- It is given by

To= &[4+ 4(0)+ 3,81+ H()]
+ @B, [ +5,@) +3,(® 1)+ 26 (n]
+ @ [1,+ 600 + & 41, +£,(8)]

o
[ ] - A = y ! _L
+ ®,_4 {.3 '-@Dlé""@’-%—zJ(A' *3h

(10.3-1)
where
e g (Tema ) o (4 7wy e?)
e AL AS X
o= (T Te) +meC (veye) - 22 v,

-2
|

s'j%‘P

LSRN L A



*%

f1(@)= Tr [ (5o
7, (®,,1)
R(n) =48,
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+ % ( - 7(3)_]

L 28, (45=%)
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~ .
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AQ = V)A']
in which
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(10.3-2)

(. 3-3)

a Me ,ﬂare masses of BRI , B*. and total system,

respectively,/q’ ,/;1", 4 are as given in (3,3-2) in part T,



and other quantities are related to the geometry and mass
distribution in the system.
The potential energy of the system is only due to the
elastic strain energy and is, as in part I, given by
Vs = 1 VY (10.3-4)
From the Lagrangian L= T - V; , the equations of motion are

derived, and after linearizing these equatlons about a nominal

state@‘ @ and assuming ® @ &)L 6) @ =0,

we obtain

-
2bs be be 9
PL L {7. (l“q"; AL ) ;z_

- 7 = - (d -T
+ [0 o o s 0 o o] T ) ‘ [ M
0 o O él ° o o Gz 7‘;.
. J
o o A o o 1
- J qu - 4L hoJ»

(10.3-5)
where only a single mode for the appendage has been used, and

,» § are small perturbations about @5, , respectively, A

z
is a damping coefficient for the appendage,
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and Py » P s+ B 2re system constants based on mass distribution

and geometry. Now, let the torques 7, 7, of the PID

controllers be

, &
f/\" - [k.\e, + K 8, +k‘3} °t°u-'J
[

.q

dt
R LT, Y J

° 00-3-7)
Taking the transform of (10.2-7) and (10.3-7) into the

s-domain (complex domain), we obtain

[ . ]
2b S ¢k, + K, 5+ Kia * T
h‘ + }] 7 2 -—s—- b‘ s

T G

Py st (/“*'ﬁ =Med ) s M 'sters+7

- —
r'é,(s;

gw| = (O]

)
b’lL J»

(1o 3-¢)
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The characteristic equation for the system is obtained by

equating the determinant of the coefficient matrix in this

equation to zero. The result is

¥ ;
ij s =0 (10.2.9)
Jap
where
.)C e C J
° \
..F' tCz\,"'C'A

£ = ch+-C,_)+C,/‘,

b
"

J
SV +C At p
/
;4 = ¢V + CeA+c p
/ =/ 2
Fo =S Vtcgategp’sk dp-k, b,
(X

' LN
I L YL

! / 2
‘F., =C7) +C‘/4 — ki J;“' Kaa bc

* L 2
‘Fs = c7/"‘I_" zh; J/“ - ZPI}‘ J/‘,-z‘il b’

(10-3-10)
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The above characteristic equation

(10.3-11)

is for a three-body systam,
The CE “or a two-body svstem in which the IPM gimbal

is

locked to the shuttle so that 91* 0, and the PID controller

in the IPM is absent ( contro gaing K;; 's for 7, are zerq),

‘s obtained by striking out the second row and column in the

coefficient matrix in (10,3-8) as follows:

(8 2 T
2|n38+kn ‘t’kn.s*'-';y by $

[‘ P‘ sz' /k's‘;-ZS‘fJ

]t

from which the CE for a two-body system is

§ )

= (o]

(10.3-12)
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/
} Vo, o+ ap p

/
.F4 - )"*‘q,p/‘

fo e p- b
¥ zba (l0-3-l1')
a, = —
F 2,
a,. . ka
) ZPJ
qI < .b:’.
‘ks 00.3--\:)

At this point since we have obtained the CE in the s-domain
we can apply the parameter plane analysis, We will consider

a two-body system and a three-bod' system separately,
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10.4 Two-Body Svstem

Once the CE is obtained we bhave to identify the parameters

o« and P . If we write the equation fcr the appendage modal

coordinate from (10,3-5), we obtain

e ..
i+ dinne - 2)h

(10.4-1)
Defining
T = J:;",
5. - A
r RN (10.4-2)
§e - 2
/‘I
we can write (10.k-1) as
A y 0" v+a--".z A.'e.
+ 2).0g FIT :
(e S (10.4-3)

which is a standard form. Hence, dividing (10.3-13) by A',

we can write the CE as

] J
Z‘Fj\5=’0
230

(10.4-4)
where
¥°‘aqu
£, = qfﬂ;""\- 1% %
£, - Q0 +1 fe % T + 4p

. . i (10.4-5)
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Now, from the three instrument characteristics 6; . fF .ad .Jf

we can identify two as the o , P parameters, Usually, f;

| 8
is assumed, hence, 6; and ji are the candidates tor the

e

2 parameiers. The rest of the quantities in f; are

F ’ aD s at

can be chosen in any appropriate manner bearing in mind

to be chosen including & . The controlgains a

that *he choice of these should give a stable system if the
appendage were rigid, i.e., the system
3 (R
S +a4,s + 8,5+, =0
° P z (10.4-6)
should be a stable system for any choice of the gains.
Following the procedure for the parameter plaie analysis we

L S
recast G. in terms of G; and & as follows:
I

? (10.4-7)
Table 7 shows the coefficients &; | FJ ) 1} L 5; . Then
obtain the two algebraic equations

-
2
AIG-F -Q'ALG_F“\‘A;_;_.-Q-A* =0

8 ot+ B Gy 48 F L@, =0
VU - = < ¢ (10.4-8)

Solution of these equations for ‘arious values »f 9, w, gives
O and 6?1 . Figures 14 through 17 show these parameter
plane curves. Figure 14 shows the unstable regior; Fig. 15
shows the {-curvesfor §=0, 0.1,...., 1; Fig. 16 shows

a few curves of Fig. 15 for clarity, and Fig, 17 shows the

effect cf varying the ‘F . As f‘ decreases the unstable

region expands.
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To illustrate the use of these curves, refer to Fig. 16.
If a designer wants to keep Op20.6 and damping ratio S
between § = 0.1 and 0.2 he could, for instance, work irn
the elbow region shaded in the diagram., By adjusting the
system parameters ( essentially the instrument characteristics)
he could obtain point A or B if he so chooses.

For the two bodv system considered we see the parameter
olarne lending itself completely to the designer's choice of
the system parameters., We assumed only the control gains
and SF of the instrument in tihe whole system in plotting
these curves. All other sy<tem characteristics especially

the flexible instrument can be varied over a wide range of

chcice,
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10.5 Three-Body System

The characteristic equation for the three-body system is
given in (10.3-9) through (10,3-11). As in the case of ¢
two-body system we will try to identify two parameters )

The equation for the appendage moda! coordinate from (10.3-5)

doaox s VY a(=b)s /“ﬁ—/‘fﬁ) 5
+ X + - - S8 /5 + 4 9,_
1 1 M | ( /") ' ( M (10.5-1)

, Y
G'Fc;;'

Defining

Te « 2
2 9/.’ {
J = /‘?6—//“"’ 3 (10.5-2)
the equation (10.5-1) becomes
(%Y . ‘L [ .
+ 1.f . "M+ 6% = -Jﬁ 6 -pé.b
q F Fv] F 7 ( /«l) ] L (10.5-3)

This equation is similar to the case of a two-body system
(see (10.4-3)) except that there is an additional term on
the right side due to the added motion in the system, This
indicates that the appendage motion is controlled by both
motions & and 6, .
Examination of the coefficients f; in (10.3-10) tells
us that % cannot be expressed in terms of only two flexi-

bility" parameters o(,(i and SF of the instrument, and

the control gains, There are additional terms which would
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not disappear. Thus, for the three-body system the coeff-
icients do not simplify as in the case of a two-body system,
Nevertheless, a parameter plane study can be carried out for
any chosen pair of parameters. All quantities except the
two parameters must then be specified. The usefulness of
the curves depends on what and how many -quantities are
specified in the system, Ideally we would like to leave

the entire flexible instrument unspecified (except §¢ ).

In the following three different forms are shown for writing
the fj in terms of some possible parameters, In all cases
the CE is the same, i.e., (10.3-9).

1) Form One
f = a;"'yi

A F RIS

A S RS KA

fy = 6-;7., +25e5% 1.+ Y

O °T:13’,-*"5;°7=3§ +7,

AL S RIS S AT

£ = 0;,;",; +2f G +3§'

£ %% T, ¥

" 3’7, (10-5-4)
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in which 5; is one parameter and the normalized mass fﬁf of

!
the instrument is the other parameter. The }f , }2 are
functions (polynomials) of the normalized mass. All other
physical attributes except :hese parameters have to be specified,

If the % are written in the form

- - = 1 =
.z o, t 0+ f; &' . .
§; = Koy +P TN rg Yy (10.5-5)

where

5’-_— /‘T$—/‘4'{-‘,’_
"?'Y'L J/“, (10.5'6)
then the qg, ﬂj ,J} , etc, are given in Tables 8 and 9.
Table 8 is for the second form and Table 9 is for the third

form tor these FJ of the CE.

Ky = Xa qp, = Su

Qp' h Lb; ) Ao by ) - 2h,

- kll kLL q - ktJ
R e i T
(U be o' & b M

J
2 Yo by O 2 M
/ d;l

= L ..--"—

—ft M P; (‘O'S-")
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In exactly a similar manner as in the case of a2 two-body
system the control gains are chosen to stabilize a full three
rigid-body system, Since O S N £ 1 the rigid system can be
stabilized such that it is stable for any value of N. The value
N depends on only mass distribution, In the forms two and three
- orJf is an additional parameter which is dependent on the
parameter 6’. Hence, it is not very useful to plot planar
curves of G and J' .

In the present work form one is used to plot the parameter
plane curves., All quantities specified are normalized with
respect to some system quantities, Figures 18 and 19 show
these curves., The unstable region is shown shaded. |In Fig. 18
the effect c¢i varying 1F is also seen, Due to the existence
of multiple roots there are multiple 4-curves. Figure 19

shows some of these j-curves.
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10.6 Summary and Conclusions

In the case of a two-body system the parameter plane
proved to be a very elegant and powerful method to study
the flexibility characteristics of the class of instruments
that may be fitted to the shuttle of a multi-purpose
spacecraft, Once the model is specified and the control gains
are obtained in terms of ratios to some system quantity, the
parameter plane curves can be plotted for any given value
of the modal damping SF. No other data need be specified,
This offers plentv of freedom in designing the flexible
instrument., Also, the physical characteristics of the
shuttle and the IPM can also be adjusted. Indeed the
parameter plane curves are very useful to the designer
if the system is represented by a two-body model.

in the case of a three-body system complications arise
and separating the flexibility characteristics of the instr-
uments into two parameters is not possible. There must be
three parameters (excuding SF ) to portray the flexibility
of the instruments, But two of them are dependent through
the physical characteristics of the instruments., Hence,
even a three dimensional plot is not very useful, One
could plot sets of two parameter plane curves for a wide
range of the third parameter, But this may not be convenient

or reasonably straightforward, The alternate approach is to
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specify as much data as is essential regarding the shuttle

and the iPM and try to express the flexibility characteristics

that are most variable from the designer's point of view

as parameters, This will require specification of some

physical attributes of the instrument itself, This undoubt-

edly lessens the freedom of design of the instruments. Some

ingenuity is called for in choosing the proper parameters
so that least number of data about the instrument need only

be specified and the curves obtained are most useful in
direct application in designing the rest of the character-.

istics of the instruments. In short, three- body system

leads to limitations in the use of the parameter plane curves.
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